54 research outputs found

    Stronger together: learning from an interdisciplinary Dementia, Arts & Wellbeing Network (DA&WN)

    Get PDF
    There is increasing interest in the use of arts and creative activity to enhance dementia care (e.g. Beard, 2012; Cowl & Gaugler, 2014; Young, Camic & Tischler, 2016), and to bring together and support professionals and those who use services, see Creative Practice as Mutual Recovery (2018). Over the past decade a growing body of research has established this interdisciplinary field of study and there are strategic moves to embed the arts in healthcare more widely (All-Party Parliamentary Group for Arts, Health and Wellbeing, 2017). However, existing research and arts practice have often proceeded in parallel with practitioners criticised for not providing evidence of efficacy, and researchers berated for not working collaboratively with artists (Zeilig & West, in press) and not involving people living with dementia in the co-design of research

    Place-Based Learning Communities on a Rural Campus: Turning Challenges into Assets

    Get PDF
    At Humboldt State University (HSU), location is everything. Students are as drawn to our spectacular natural setting as they are to the unique majors in the natural resource sciences that the university has to offer. However, the isolation that nurtures the pristine natural beauty of the area presents a difficult reality for students who are accustomed to more densely populated environments. With the large majority of our incoming students coming from distant cities, we set out to cultivate a “home away from home” by connecting first-year students majoring in science, technology, engineering and math (STEM) to the communities and local environment of Humboldt County. To achieve this, we designed first-year place-based learning communities (PBLCs) that integrate unique aspects and interdisciplinary themes of our location throughout multiple high impact practices, including a summer experience, blocked-enrolled courses, and a first-year experience course entitled Science 100: Becoming a STEM Professional in the 21st Century. Native American culture, traditional ways of knowing, and contemporary issues faced by tribal communities are central features of our place-based curriculum because HSU is located on the ancestral land of the Wiyot people and the university services nine federally recognized American Indian tribes. Our intention is that by providing a cross-cultural, validating environment, students will: feel and be better supported in their academic pursuits; cultivate values of personal, professional and social responsibility; and increase the likelihood that they will complete their HSU degree. As we complete the fourth year of implementation, we aim to harness our experience and reflection to improve our programming and enable promising early results to be sustained

    First on-line detection of radioactive fission isotopes produced by laser-accelerated protons

    Get PDF
    The on-going developments in laser acceleration of protons and light ions, as well as the production of strong bursts of neutrons and multi-MeV photons by secondary processes now provide a basis for novel high-flux nuclear physics experiments. While the maximum energy of protons resulting from Target Normal Sheath Acceleration is presently still limited to around 100 MeV, the generated proton peak flux within the short laser-accelerated bunches can already today exceed the values achievable at the most advanced conventional accelerators by orders of magnitude. This paper consists of two parts covering the scientific motivation and relevance of such experiments and a first proof-of-principle demonstration. In the presented experiment pulses of 200 J at ≈500 fs duration from the PHELIX laser produced more than 10¹² protons with energies above 15 MeV in a bunch of sub-nanosecond duration. They were used to induce fission in foil targets made of natural uranium. To make use of the nonpareil flux, these targets have to be very close to the laser acceleration source, since the particle density within the bunch is strongly affected by Coulomb explosion and the velocity differences between ions of different energy. The main challenge for nuclear detection with high-purity germanium detectors is given by the strong electromagnetic pulse caused by the laser-matter interaction close to the laser acceleration source. This was mitigated by utilizing fast transport of the fission products by a gas flow to a carbon filter, where the γ-rays were registered. The identified nuclides include those that have half-lives down to 39 s. These results demonstrate the capability to produce, extract, and detect short-lived reaction products under the demanding experimental condition imposed by the high-power laser interaction. The approach promotes research towards relevant nuclear astrophysical studies at conditions currently only accessible at nuclear high energy density laser facilities

    Online chemical adsorption studies of Hg, Tl, and Pb on SiO2 and Au surfaces in preparation for chemical investigations on Cn, Nh, and Fl at TASCA

    Get PDF
    Online gas-solid adsorption studies with single-atom quantities of Hg, Tl, and Pb, the lighter homologs of the superheavy elements (SHE) copernicium (Cn, Z =112), nihonium (Nh, Z =113), and flerovium (Fl, Z =114), were carried out using short-lived radioisotopes. The interaction with Au and SiO 2 surfaces was studied and the overall chemical yield was determined. Suitable radioisotopes were produced in fusion-evaporation reactions, isolated in the gas-filled recoil separator TASCA, and flushed rapidly to an adjacent setup of two gas chromatography detector arrays covered with SiO 2 (first array) and Au (second array). While Tl and Pb adsorbed on the SiO 2 surface, Hg interacts only weakly and reached the Au-covered array. Our results contribute to elucidating the influence of relativistic effects on chemical properties of the heaviest elements by providing experimental data on these lighter homologs
    corecore