153 research outputs found

    Receipt, 20 February 1844

    Get PDF
    https://egrove.olemiss.edu/aldrichcorr_b/1100/thumbnail.jp

    Elevated creatine kinase activity in primary hepatocellular carcinoma

    Get PDF
    BACKGROUND: Inconsistent findings have been reported on the occurrence and relevance of creatine kinase (CK) isoenzymes in mammalian liver cells. Part of this confusion might be due to induction of CK expression during metabolic and energetic stress. METHODS: The specific activities and isoenzyme patterns of CK and adenylate kinase (AdK) were analysed in pathological liver tissue of patients undergoing orthotopic liver transplantation. RESULTS: The brain-type, cytosolic BB-CK isoenzyme was detected in all liver specimens analysed. Conversely, CK activity was strongly increased and a mitochondrial CK (Mi-CK) isoenzyme was detected only in tissue samples of two primary hepatocellular carcinomas (HCCs). CONCLUSION: The findings do not support significant expression of CK in normal liver and most liver pathologies. Instead, many of the previous misconceptions in this field can be explained by interference from AdK isoenzymes. Moreover, the data suggest a possible interplay between p53 mutations, HCC, CK expression, and the growth-inhibitory effects of cyclocreatine in HCC. These results, if confirmed, could provide important hints at improved therapies and cures for HCC

    Progress in melanoma modeling in vitro

    Get PDF
    Melanoma is one of the most studied neoplasia, although laboratory techniques used for investigating this tumor are not fully reliable. Animal models may not predict the human response due to differences in skin physiology and immunity. In addition, international guidelines recommend to develop processes that contribute to the reduction, refinement and replacement of animals for experiments (3Rs). Adherent cell culture has been widely used for the study of melanoma to obtain important information regarding melanoma biology. Nonetheless, these cells grow in adhesion on the culture substrate which differs considerably from the situation in vivo. Melanoma grows in a 3D spatial conformation where cells are subjected to a heterogeneous exposure to oxygen and nutrient. In addition, cell-cell and cell-matrix interaction play a crucial role in the pathobiology of the tumor as well as in the response to therapeutic agents. To better study melanoma new techniques, including spherical models, tumorospheres, and melanoma skin equivalents have been developed. These 3D models allow to study tumors in a microenvironment that is more close to the in vivo situation, and are less expensive and time consuming than animal studies. This review will also describe the new technologies applied to skin reconstructs such as organ-on-a-chip that allows skin perfusion through microfluidic platforms. 3D in vitro models, based on the new technologies, are becoming more sophisticated, representing at a great extent the in vivo situation, the "perfect" model that will allow less involvement of animals up to their complete replacement, is still far from being achieved. This article is protected by copyright. All rights reserved
    • …
    corecore