26 research outputs found
OpenPNM: A Pore Network Modeling Package
Pore network modeling is a widely used technique for simulating multiphase transport in porous materials, but there are very few software options available. This work outlines the OpenPNM package that was jointly developed by several porous media research groups to help address this gap. OpenPNM is written in Python using NumPy and SciPy for most mathematical operations, thus combining Python's ease of use with the performance necessary to perform large simulations. The package assists the user with managing and interacting with all the topological, geometrical, and thermophysical data. It also includes a suite of commonly used algorithms for simulating percolation and performing transport calculations on pore networks. Most importantly, it was designed to be highly flexible to suit any application and be easily customized to include user-specified pore-scale physics models. The framework is fast, powerful, and concise. An illustrative example is included that determines the effective diffusivity through a partially water-saturated porous material with just 29 lines of code
An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates
The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes—remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3–400 μm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes’ Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of ~40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean
Cell morphology governs directional control in swimming bacteria
The ability to rapidly detect and track nutrient gradients is key to the ecological success of motile bacteria in aquatic systems. Consequently, bacteria have evolved a number of chemotactic strategies that consist of sequences of straight runs and reorientations. Theoretically, both phases are affected by fluid drag and Brownian motion, which are themselves governed by cell geometry. Here, we experimentally explore the effect of cell length on control of swimming direction. We subjected Escherichia coli to an antibiotic to obtain motile cells of different lengths, and characterized their swimming patterns in a homogeneous medium. As cells elongated, angles between runs became smaller, forcing a change from a run-and-tumble to a run-and-stop/reverse pattern. Our results show that changes in the motility pattern of microorganisms can be induced by simple morphological variation, and raise the possibility that changes in swimming pattern may be triggered by both morphological plasticity and selection on morphology
Estimates of new and total productivity in central Long Island Sound from in situ measurements of nitrate and dissolved oxygen
Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 36 (2013): 74-97, doi:10.1007/s12237-012-9560-5.Biogeochemical cycles in estuaries are regulated by a diverse set of physical and
biological variables that operate over a variety of time scales. Using in situ optical sensors, we
conducted a high-frequency time-series study of several biogeochemical parameters at a mooring
in central Long Island Sound from May to August 2010. During this period, we documented
well-defined diel cycles in nitrate concentration that were correlated to dissolved oxygen, wind
stress, tidal mixing, and irradiance. By filtering the data to separate the nitrate time series into
various signal components, we estimated the amount of variation that could be ascribed to each
process. Primary production and surface wind stress explained 59% and 19%, respectively, of the
variation in nitrate concentrations. Less frequent physical forcings, including large-magnitude wind events and spring tides, served to decouple the relationship between oxygen, nitrate, and
sunlight on about one-quarter of study days. Daytime nitrate minima and dissolved oxygen
maxima occurred nearly simultaneously on the majority (> 80%) of days during the study period;
both were strongly correlated with the daily peak in irradiance. Nighttime nitrate maxima
reflected a pattern in which surface-layer stocks were depleted each afternoon and recharged the
following night. Changes in nitrate concentrations were used to generate daily estimates of new
primary production (182 ± 37 mg C m-2 d-1) and the f-ratio (0.25), i.e., the ratio of production
based on nitrate to total production. These estimates, the first of their kind in Long Island Sound,
were compared to values of community respiration, primary productivity, and net ecosystem
metabolism, which were derived from in situ measurements of oxygen concentration. Daily
averages of the three metabolic parameters were 1660 ± 431, 2080 ± 419, and 429 ± 203 mg C
m-2 d-1, respectively. While the system remained weakly autotrophic over the duration of the
study period, we observed very large day-to-day differences in the f-ratio and in the various
metabolic parameters.This work was supported by the Yale
Institute for Biospheric Studies, the Sounds Conservancy of the Quebec-Labrador Foundation,
and the Yale School of Forestry and Environmental Studies Carpenter-Sperry Fund.2014-01-0
Self-sharpening induces jet-like structure in seafloor gravity currents
Gravity currents are the primary means by which sediments, solutes and heat are transported across the ocean-floor. Existing theory of gravity current flow employs a statistically-stable model of turbulent diffusion that has been extant since the 1960s. Here we present the first set of detailed spatial data from a gravity current over a rough seafloor that demonstrate that this existing paradigm is not universal. Specifically, in contrast to predictions from turbulent diffusion theory, self-sharpened velocity and concentration profiles and a stable barrier to mixing are observed. Our new observations are explained by statistically-unstable mixing and self-sharpening, by boundary-induced internal gravity waves; as predicted by recent advances in fluid dynamics. Self-sharpening helps explain phenomena such as ultra-long runout of gravity currents and restricted growth of bedforms, and highlights increased geohazard risk to marine infrastructure. These processes likely have broader application, for example to wave-turbulence interaction, and mixing processes in environmental flows