6,973 research outputs found
Unconditionally secure one-way quantum key distribution using decoy pulses
We report here a complete experimental realization of one-way decoy-pulse
quantum key distribution, demonstrating an unconditionally secure key rate of
5.51 kbps for a 25.3 km fibre length. This is two orders of magnitudes higher
than the value that can be obtained with a non-decoy system. We introduce also
a simple test for detecting the photon number splitting attack and highlight
that it is essential for the security of the technique to fully characterize
the source and detectors used.Comment: 10 pages, 5 figure
Physical Results from Unphysical Simulations
We calculate various properties of pseudoscalar mesons in partially quenched
QCD using chiral perturbation theory through next-to-leading order. Our results
can be used to extrapolate to QCD from partially quenched simulations, as long
as the latter use three light dynamical quarks. In other words, one can use
unphysical simulations to extract physical quantities - in this case the quark
masses, meson decay constants, and the Gasser-Leutwyler parameters L_4-L_8. Our
proposal for determining L_7 makes explicit use of an unphysical (yet
measurable) effect of partially quenched theories, namely the double-pole that
appears in certain two-point correlation functions. Most of our calculations
are done for sea quarks having up to three different masses, except for our
result for L_7, which is derived for degenerate sea quarks.Comment: 26 pages, 12 figures (discussion on discretization errors at end of
sec. IV clarified; minor improvements in presentation; results unchanged
Aluminium or copper substrate panel for selective absorption of solar energy
A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate
Method for making an aluminum or copper substrate panel for selective absorption of solar energy
A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed
Linear stability of planar premixed flames: reactive Navier-Stokes equations with finite activation energy and arbitrary Lewis number
A numerical shooting method for performing linear stability analyses of travelling waves is described and applied to the problem of freely propagating planar premixed flames. Previous linear stability analyses of premixed flames either employ high activation temperature asymptotics or have been performed numerically with finite activation temperature, but either for unit Lewis numbers (which ignores thermal-diffusive effects) or in the limit of small heat release (which ignores hydrodynamic effects). In this paper the full reactive Navier-Stokes equations are used with arbitrary values of the parameters (activation temperature, Lewis number, heat of reaction, Prandtl number), for which both thermal-diffusive and hydrodynamic effects on the instability, and their interactions, are taken into account. Comparisons are made with previous asymptotic and numerical results. For Lewis numbers very close to or above unity, for which hydrodynamic effects caused by thermal expansion are the dominant destablizing mechanism, it is shown that slowly varying flame analyses give qualitatively good but quantitatively poor predictions, and also that the stability is insensitive to the activation temperature. However, for Lewis numbers sufficiently below unity for which thermal-diffusive effects play a major role, the stability of the flame becomes very sensitive to the activation temperature. Indeed, unphysically high activation temperatures are required for the high activation temperature analysis to give quantitatively good predictions at such low Lewis numbers. It is also shown that state-insensitive viscosity has a small destabilizing effect on the cellular instability at low Lewis numbers
Applications of Partially Quenched Chiral Perturbation Theory
Partially quenched theories are theories in which the valence- and sea-quark
masses are different. In this paper we calculate the nonanalytic one-loop
corrections of some physical quantities: the chiral condensate, weak decay
constants, Goldstone boson masses, B_K and the K+ to pi+ pi0 decay amplitude,
using partially quenched chiral perturbation theory. Our results for weak decay
constants and masses agree with, and generalize, results of previous work by
Sharpe. We compare B_K and the K+ decay amplitude with their real-world values
in some examples. For the latter quantity, two other systematic effects that
plague lattice computations, namely, finite-volume effects and unphysical
values of the quark masses and pion external momenta are also considered. We
find that typical one-loop corrections can be substantial.Comment: 22 pages, TeX, refs. added, minor other changes, version to appear in
Phys. Rev.
Charge-ice dynamics in the negative thermal expansion material Cd(CN)
We use variable-temperature (150--300\,K) single-crystal X-ray diffraction to
re-examine the interplay between structure and dynamics in the ambient phase of
the isotropic negative thermal expansion (NTE) material Cd(CN). We find
strong experimental evidence for the existence of low-energy vibrational modes
that involve off-centering of Cd ions. These modes have the effect of
increasing network packing density---suggesting a mechanism for NTE that is
different to the generally-accepted picture of correlated Cd(C/N) rotation
modes. Strong local correlations in the displacement directions of neighbouring
cadmium centres are evident in the existence of highly-structured diffuse
scattering in the experimental X-ray diffraction patterns. Monte Carlo
simulations suggest these patterns might be interpreted in terms of a basic set
of `ice-rules' that establish a mapping between the dynamics of Cd(CN) and
proton ordering in cubic ice VII.Comment: 5 pages, 5 figures, submitted to PR
Monitoring Physical Activity: Uses and Measurement Issues With Automated Counters
Background: Promotion of physical activity is a public health priority, and environmental factors influence physical activity behavior. Valid and reliable automated measurement tools of physical activity for assessment and evaluation within public settings are needed. Methods: Searches of the research literature and governmental reports from physical activity, transportation, and recreation fields were conducted to identify methods of automated counting and validation studies. The article provides a summary of (a) current methods and uses of automated counters, (b) information about validity and reliability where available, (c) strengths and limitations of each methods, and (d) measurement issues. Results: Existing automated counting technology has strengths and limitations. Infrared sensors have been the most commonly used type of monitor and can mark date and time of passage, but are vulnerable to errors due to environmental conditions; cannot detect more than one person passing at a time; cannot identify mode of activity or distinguish among individuals; and lack consistent and adequate reliability for use in open spaces. Seismic devices and inductive loops may be useful for specific applications. More information is needed concerning the validity and reliability of infrared sensors, seismic devices, and inductive loops for confined areas. Computer imaging systems hold potential to address some of the limitations of author automated counters and for applications in both confined and open areas, but validation research is in the initial stages. Conclusions: Although automated monitoring is a promising method for measurement of physical activity, more research is necessary to determine the acceptable parameters of performance for each type of automated monitor and for which applications each is best suited
- …