156 research outputs found

    Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory

    Full text link
    Properties of the proton and neutron are studied in partially-quenched chiral perturbation theory at finite lattice spacing. Masses, magnetic moments, the matrix elements of isovector twist-2 operators and axial-vector currents are examined at the one-loop level in a double expansion in the light-quark masses and the lattice spacing. This work will be useful in extrapolating the results of simulations using Wilson valence and sea quarks, as well as simulations using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe

    Edge Transfer Lithography Using Alkanethiol Inks

    Get PDF
    Edge lithographic patterning techniques are based on the utilization of the edges of micrometer-sized template features for the reproduction of submicrometer structures. Edge transfer lithography (ETL) permits local surface modification in a single step by depositing self-assembled monolayers onto a metal substrate selectively along the feature edges of an elastomeric stamp. In this report two stamp designs are described that now allow for the use of alkanethiol inks in ETL and their use as etch resists to reproduce submicrometer structures in gold. Anisotropically modified stamps are shown to combine the potential for very high-resolution patterning with the versatility and simplicity of microcontact printing

    On the effects of (partial) quenching on penguin contributions to K-> pi pi

    Get PDF
    Recently, we pointed out that chiral transformation properties of strong penguin operators change in the transition from unquenched to (partially) quenched QCD. As a consequence, new penguin-like operators appear in the (partially) quenched theory, along with new low-energy constants, which should be interpreted as a quenching artifact. Here, we extend the analysis to the contribution of the new low-energy constants to the K^0 -> pi^+ pi^- amplitude, at leading order in chiral perturbation theory, and for arbitrary (momentum non-conserving) kinematics. Using these results, we provide a detailed discussion of the intrinsic systematic error due to this (partial) quenching artifact. We also give a simple recipe for the determination of the leading-order low-energy constant parameterizing the new operators in the case of strong LRLR penguins.Comment: 17 pages, 1 figure, minor correction

    The nucleon's strange electromagnetic and scalar matrix elements

    Full text link
    Quenched lattice QCD simulations and quenched chiral perturbation theory are used together for this study of strangeness in the nucleon. Dependences of the matrix elements on strange quark mass, valence quark mass and momentum transfer are discussed in both the lattice and chiral frameworks. The combined results of this study are in good agreement with existing experimental data and predictions are made for upcoming experiments. Possible future refinements of the theoretical method are suggested.Comment: 24 pages, 9 figure

    Directional ballistic transport in the two-dimensional metal PdCoO2

    Get PDF
    This project was supported by the Max Planck Society and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MiTopMat, grant agreement no. 715730). M.D.B. and P.H.M. acknowledge EPSRC for PhD studentship support through grant number EP/L015110/1. Research in Dresden benefits from the environment of the Excellence Cluster ct.qmat. A.S. acknowledges support from an ARCS Foundation Fellowship, a Ford Foundation Predoctoral Fellowship and a National Science Foundation Graduate Research Fellowship. A.S. would thanks Z. Gomez and E. Huang for helpful discussions and T. Devereaux for letting us use his group cluster. Computational work was performed on the Sherlock cluster at Stanford University and on resources of the National Energy Research Scientific Computing Center, supported by the DOE under contract DE_AC02-05CH11231. T.S. acknowledges support from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation, and from the Natural Sciences and Engineering Research Council of Canada (NSERC), in particular the Discovery Grant (RGPIN-2020-05842), Accelerator Supplement (RGPAS-2020-00060) and Discovery Launch Supplement (DGECR-2020-00222). T.S. contributed to this work prior to joining AWS. D.G.-G.’s and A.W.B.’s involvement in calculations was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. E.Z. and M.M. thank the International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM) for financial support. G.B. and D.A.B. acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2018-04280) and from the Canada First Research Excellence Fund.In an idealized infinite crystal, the material properties are constrained by the symmetries of the unit cell. The point-group symmetry is broken by the sample shape of any finite crystal, but this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from an anisotropic Fermi surface are needed. Here we show how a strongly facetted Fermi surface and the long quasiparticle mean free path present in microstructures of PdCoO2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. We fabricate bar-shaped transport devices narrower than the mean free path from single crystals using focused ion beam milling, such that the ballistic charge carriers at low temperatures frequently collide with both of the side walls that define the channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and a transverse voltage appears in zero magnetic field. Using ballistic Monte Carlo simulations and a numerical solution of the Boltzmann equation, we identify the orientation of the narrow channel as the source of symmetry breaking.Publisher PDFPeer reviewe

    Electromagnetic Interactions GEneRalized (EIGER) - Algorithm abstraction and HPC implementation

    Full text link
    Modern software development methods combined with key generalizations of standard computational algorithms enable the development of a new class of electromagnetic modeling tools. This paper describes current and anticipated capabilities of a frequency domain modeling code, EIGER, which has an extremely wide range of applicability. In addition, software implementation methods and high performance computing issues are discussed

    Super-geometric electron focusing on the hexagonal Fermi surface of PdCoO2

    Get PDF
    The project was supported by the Max-Planck Society and has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 715730). M.D.B. acknowledges studentship funding from EPSRC under grant no. EP/I007002/1. A.L.S. acknowledges support from a Ford Foundation Predoctoral Fellowship and a National Science Foundation Graduate Research Fellowship. A.L.S. would like to thank Edwin Huang for helpful discussions and Tom Devereaux for letting us use his group cluster. Computational work was performed on the Sherlock cluster at Stanford University and on resources of the National Energy Research Scientific Computing Center, supported by DOE under contract DE_AC02-05CH11231. D.G.G.’s and A.W.B.’s work was supported by the U.S. Department of Energy, Office of Science, Basic EnergySciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-76SF00515.Geometric electron optics may be implemented in solids when electron transport is ballistic on the length scale of a device. Currently, this is realized mainly in 2D materials characterized by circular Fermi surfaces. Here we demonstrate that the nearly perfectly hexagonal Fermi surface of PdCoO2 gives rise to highly directional ballistic transport. We probe this directional ballistic regime in a single crystal of PdCoO2 by use of focused ion beam (FIB) micro-machining, defining crystalline ballistic circuits with features as small as 250 nm. The peculiar hexagonal Fermi surface naturally leads to enhanced electron self-focusing effects in a magnetic field compared to circular Fermi surfaces. This super-geometric focusing can be quantitatively predicted for arbitrary device geometry, based on the hexagonal cyclotron orbits appearing in this material. These results suggest a novel class of ballistic electronic devices exploiting the unique transport characteristics of strongly faceted Fermi surfaces.Publisher PDFPeer reviewe

    Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    Get PDF
    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ+ provides the best opportunity to display the artifacts of the quenched approximation.Derek B. Leinwebe
    • …
    corecore