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The possibility of directionality, or anisotropy, of the electri-
cal resistivity of a crystalline material is determined by the 
point-group symmetry of its underlying lattice. The resistivity 

ρ in two dimensions for square, triangular and hexagonal lattices 
must be isotropic (Supplementary Note 1). Only if the rotational 
symmetry is lowered to two-fold is in-plane anisotropy permitted, 
such that the two diagonal components ρxx and ρyy differ. Such sym-
metry lowering has attracted significant attention due to the study 
of so-called electronic nematic and smectic liquid crystals, in which 
self-organization of the electron fluid is thought to be the driver 
of the broken symmetry1–5. Indeed, transport measurements sensi-
tive to resistive anisotropy have been a key probe of this class of 
physics. In this work, we address the question of whether other 
approaches can also induce transport anisotropies. Specifically, we 
create micron-scale devices of differing orientation relative to an 
underlying crystal lattice, without disturbing the point-group sym-
metries of that lattice, and investigate whether channel orientation 
affects transport.

Fundamentally, all bulk crystalline symmetries are broken in 
any finite-size conductor. However, this usually has no observable 
effects on measured resistances of metals because carriers scatter so 
strongly in the bulk that scattering at the boundaries is irrelevant. 
In this case, the current density and electric field are related by a 
resistivity tensor ρ that adheres to the crystalline point-group sym-
metry. It has been known for decades that it is possible to purify 
metallic and semiconducting crystals enough to enter the so-called 
ballistic transport regime6,7, in which the electron mean free path 
λ between internal scattering events exceeds the minimum sample 

dimension. In this regime, boundary scattering becomes relevant 
or even dominant. However, this alone is not sufficient to produce 
observable resistivity anisotropy. The essential additional ingredi-
ent is significant Fermi surface (FS) anisotropy. Early theoretical 
consideration of ellipsoidal Fermi surfaces8–11 led to predictions of 
transport anisotropies, but experiments in aluminium12,13 did not 
resolve such effects. Recent results on epitaxial tungsten thin films 
have detected a growth-direction dependence of the resistance 
when the films are thin enough to be in the ballistic limit in the 
direction perpendicular to the substrate14. This result is attributed to 
the anisotropy of the three-dimensional Fermi surface of tungsten 
and hence suggests that boundary-induced symmetry breaking is 
achievable. Here, we exploit the in-plane anisotropy of the Fermi 
surface in a two-dimensional metal, PdCoO2, to demonstrate not 
only that directional symmetry breaking is achievable but that it can 
be a large effect. By cutting differently oriented channels from the 
same single crystal, we remove any sample-dependent uncertain-
ties from the experiments. We present a simple intuitive picture to 
explain our observations, and then reinforce it with calculations and 
Monte Carlo simulations.

Experiment
The ultra-clean, naturally layered crystal structure of PdCoO2 is 
host to extremely conductive, quasi-two-dimensional sheets of pal-
ladium, separated by layers of CoO2 octahedra. Due to the strikingly 
high purity of this oxide15, it can support electron mean free paths of 
up to 20 µm at temperatures below 20 K, as evidenced by an in-plane 
residual resistivity value of only 8 nΩ cm (ref. 16). Extensive de  
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Haas–van Alphen17, angle-resolved photoemission18,19, angle- 
dependent magnetoresistance20 and magneto-transport21 measure-
ments have well characterized its hexagonal Fermi surface, which 
fills half of the Brillouin zone, as expected for a monovalent metal. 
The out-of-plane dispersion is so weak that transport is essentially 
two dimensional (2D)22, permitting to work in a 2D approximation 
where the material is considered to be a stack of independent 2D 
layers conducting in parallel. The extremely long in-plane mean free 
path of PdCoO2 has been demonstrated directly in measurements of 
transverse electron focusing23 and the observation of field-periodic 
oscillations in microstructures24.

The crystals of PdCoO2 used in this study grow as thin plate-
lets with a typical thickness of approximately 5–30 µm and lateral 
dimensions of several hundred micrometres. Despite their layered 
structure, the crystals cannot be exfoliated and laid on a separate 
substrate to be patterned and contacted by using conventional 
nanofabrication techniques. Instead, we employ a focused ion 
beam (FIB) for three-dimensional microsculpting of as-grown 
crystals. As shown in Fig. 1a, a crystal platelet, about 350 µm 
long and 8 µm thick, has been anchored to a sapphire substrate 
using two-component Araldite epoxy. A thin layer of titanium/
gold (10 nm/150 nm) has then been evaporated(Ti)/sputtered(Au) 

on top of the device to create electrical contacts to the crystal. In 
a final step, first the titanium/gold layer is locally removed by FIB 
etching and subsequently a transport bar is shaped into the crys-
tal with suitable voltage contacts lengthways. The FIB-induced 
surface damage is limited to the outermost approximately 20 nm 
(Supplementary Note 2) and does not lead to any bulk defects25,26, as 
the ballistic transport observed in the FIB-cut bars self-evidences. 
Details of crystal synthesis23 and FIB microstructuring23,26 are given 
elsewhere. A typical PdCoO2 transport device produced by FIB 
micromachining is displayed in Fig. 1a. Conveniently, the growth 
edges of the PdCoO2 crystals are oriented perpendicular to the 
crystallographic axes, so that the crystal orientation can be deter-
mined easily. This permits the fabrication of four serial transport 
bars precisely oriented with respect to the crystal lattice of the same 
single crystal. Because of the in-plane six-fold rotational symmetry 
and reflection symmetry of the palladium planes, the full angular 
range can be spanned in steps of 10° by choosing to measure paral-
lel to the crystal direction ([110], here denoted ‘0°’) as well as 10°, 
20° and 30° away from the [110] direction. Further, we note that 
throughout this manuscript we present our data in terms of resis-
tivities, defined by the measured voltages divided by the applied  
constant current.
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Fig. 1 | Temperature-dependent in-plane transport of PdCoO2. a, One of the PdCoO2 single-crystal devices used in this work. To ensure a homogeneous 
current flow throughout the full thickness of the crystal, despite the large resistivity anisotropy of over ρc/ρa > 2,000 below 20 K, a long current-injection 
meander between the current terminals I+ and I- has been carved into the device layout25. In this way, the resistivity can be accurately determined along 
the four subsequent transport bars (V0, V10, V20 and V30) simultaneously. Five voltage contacts are distributed along the turning points of the zigzag 
current path. Additionally, the real-space orientation of the Fermi surface with respect to the crystal is shown. The apparent resistivity of each bar is 
defined as the measured voltage divided by the sourced current multiplied by the appropriate geometrical factor. When the sample is in the diffusive 
regime this corresponds to the bulk resistivity of PdCoO2, but when the ballistic regime is entered it becomes a device-specific quantity. The transport  
bars of the depicted device have a uniform thickness of 7.8 µm, and a width w and length l of w0 = 7.3 µm and l0 = 170.6 µm for V0, w10 = 6.5 µm and  
l10 = 146.5 µm for V10, w20 = 7.4 µm and l20 = 172.5 µm for V20 and w30 = 6.7 µm and l30 = 174 µm for V30. b, The temperature-dependent mean free path λ of 
a PdCoO2 bulk sample (155 µm wide; data replotted from ref. 16) and those from the 30° bar pictured in a at its initial width of 7 µm and after narrowing to 
a width of 2.5 µm, all calculated using a standard 2D expression (Supplementary Note 3). c, The temperature-dependent resistivity of the four transport 
bars shown in a. In the diffusive regime, all four curves collapse onto the same value, whereas the transport is governed by ballistic effects at lower 
temperatures. As a result, the residual resistivity is enhanced compared with the bulk value (8 nΩ cm (ref. 16)) due to boundary scattering. Strikingly, this 
resistivity enhancement is strongly angle dependent. d, Results from Boltzmann transport simulations taking into account the realistic Fermi surface shape 
as well as the temperature-dependent bulk mean free path (Supplementary Note 5).
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results
Directional ballistic effects. The in-plane mean free path λ can be 
estimated from the resistivity under the assumption of 2D transport  
as ρ−1

=
e2
hd kFλ, where d = 17.73/3 Å is the palladium layer  

separation and kF = 0.95 Å−1, where kF is the average Fermi wavevec-
tor around the Fermi surface (see Supplementary Note 3 for details). 
Figure 1 contrasts λ of the 0° oriented bar as a function of tempera-
ture to that of a bulk (155 µm wide) channel of the same orientation. 
Data are also shown for the same bar after subsequent narrowing 
from 7 to 2.5 µm width and are seen to evolve in a text-book fashion: 
At high temperatures, λ is strongly limited by phonon scattering and 
the sample is in a diffusive transport regime, hence its electronic 
response is width independent. At low temperatures, this is no lon-
ger the case and the low-temperature value of λ for the restricted 
channels is limited by their width rather than by bulk scattering. 
The temperature at which the data first deviate from the diffusive 
regime is therefore itself width dependent (see Supplementary  
Note 3 for details).

Figure 1c shows the angular dependence of the in-plane resistiv-
ity as a function of temperature. While the resistivity is isotropic 
above about 50 K, as is expected in the diffusive transport regime, it 
becomes remarkably anisotropic at lower temperatures, where the 
electron mean free path exceeds the width of the transport bars. In 
particular, for the device displayed in Fig. 1a in which the bars are 
7 µm wide, the resistivity anisotropy (ρ30 − ρ0)/ρ0 is as large as 50% 
between the most and least resistive direction. Upon thinning down 
the bars to 2.5 µm width, this ratio further increases to 200%.

The order of the curves in Fig. 1c, from least to most conduc-
tive, can be understood qualitatively by considering Fig. 2. When 
the transport bar is oriented such that it is aligned with one of three 

main directions of the Fermi velocity, a large number of electronic 
states propagate parallel to the bar and avoid any surface colli-
sions. On the other hand, when the orientation of the transport 
bar is rotated by 30°, the dominant ballistic directions guide the 
electrons towards the sample edges, leading to frequent boundary  
scattering events.

These results clearly demonstrate the notion of directional bal-
listics. In any material with a circular Fermi surface, the apparent 
resistivity is enhanced due to boundary scattering, depending on 
the specularity of the boundaries27. This effect is isotropic: a bar of 
a given width and length will have the same resistance no matter 
what orientation it is cut in. Most high-mobility two-dimensional 
electron gases have circular or smoothly evolving Fermi surfaces, in 
which no orientation dependence is observable. In contrast, a Fermi 
surface with a strongly non-isotropic Fermi velocity distribution can 
significantly modify the rate of boundary scattering and therefore 
support an orientation dependence of the resistance. A comparison 
of the Fermi surface shape and the velocity density map highlights 
the subtle role of anisotropy (Fig. 3). The overall 2D Fermi surface of 
PdCoO2 does not deviate much from a circular approximation, and 
given its six-fold rotational symmetry, it may not strike the eye as 
particularly anisotropic. Indeed, the magnitude of the Fermi velocity 
of PdCoO2 is almost constant around the Fermi surface16. The key 
aspect of directional ballistics, however, is the strong angle depen-
dence of the velocity direction distribution, that is, the probability of 
finding a certain direction of quasiparticle velocity (Supplementary 
Note 4). As the nearly flat Fermi surface segments host large den-
sities of states propagating essentially into the same direction, the 
velocity direction distribution is extremely anisotropic despite the 
relatively isotropic appearance of the Fermi surface. We propose 
such a velocity direction distribution map as a tool to visualize the 
propensity of a material to exhibit directional ballistics.

It is possible to go beyond the above qualitative discussion and 
perform Boltzmann transport simulations (see Supplementary 
Note 5 for details) which model the observations remarkably well. 
Using a Fermi surface shape parameterization established from 
angle-resolved photoemission data28, assuming diffusive bound-
ary scattering and obtaining the temperature-dependent bulk mean 
free path from data on the 155-µm-wide sample (Supplementary 
Fig. S3) the simulations produce the results shown in Fig. 1d. We 
emphasize that this agreement is achieved without the use of any 
free parameters. To investigate the role of the various ingredients 
to this directional transport separately, we performed further cal-
culations on more restricted models. First, a Boltzmann calcula-
tion including realistic bulk scattering but using an unrealistic, 
mathematically hexagonal Fermi surface probes the role of the 
rounded Fermi surface (Supplementary Note 6). A second Landau–
Büttiker-type calculation includes a realistic Fermi surface model 
but ignores the bulk scattering (Supplementary Note 7). While both 
attempts reproduce some qualitative features of the data, the excel-
lent match between simulation and experiment shown in Fig. 1d is 
only achieved by accounting simultaneously for the bulk scattering 
and the realistic Fermi surface.

Transverse voltages in zero field. Thus far, we have been con-
cerned with directional ballistic effects observable in the longitu-
dinal electrical transport. However, due to the broken rotational 
symmetry at the boundaries, finite off-diagonal terms are allowed 
in the conductivity matrix along low-symmetry directions. Such 
terms have been used to effectively probe bulk symmetry lower-
ing in Ba(Fe1−xCox)2As2 single crystals29 and La2−xSrxCuO4 thin 
films30. In PdCoO2, these are expected because of directional micro-
structuring and can be accessed by the device geometry outlined 
in Fig. 4a. Along a low-symmetry direction, a transverse volt-
age in the ballistic regime develops due to an imbalance of elec-
trons propagating towards the two different sides of the transport  
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channel. Consequently, one expects the transverse voltage to be of 
equal strength but opposite sign with respect to the angle tilted away 
from a high-symmetry direction.

This can be tested in a specifically designed microstructure 
of PdCoO2 (Fig. 4b). The outline of the crystal is indicated by a  
dashed line. Following long current-homogenizing meanders at the 
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injection (Supplementary Note 8), the heart of the sample consists 
of two serial transport bars cut at +3° and −3° with respect to the 
0° direction, both 2.2 µm wide. Each of the bars has three pairs of 
opposite voltage contacts, allowing for simultaneous transverse 
and longitudinal voltage measurements. The resulting temperature 
dependence of the transverse zero-field resistivities ρxy is presented 
in Fig. 4c. In the diffusive transport regime at high temperatures, 
the transverse resistivity is absent, as expected after appropri-
ate subtraction of the longitudinal voltage contribution originat-
ing from imperfect voltage contact alignment (see Supplementary 
Note 3 for details). With the dominant scattering off phonons in 
the bulk, the point-group symmetry of the material dominates the 
scattering, hence in-plane isotropy is symmetry enforced. However, 
upon entering the ballistic regime, a finite and asymmetric volt-
age develops across the device depending on the orientation of the 
transport bar. Again, the observations are closely reproduced by the 
Boltzmann simulation (Fig. 4d).

Discussion
The excellent agreement between the experimental results presented 
here and the Boltzmann transport simulation of the directional bal-
listics highlights the importance of taking the Fermi surface shape 
and channel direction into account in the analysis of data from 
width-restricted channels of materials such as PdCoO2 with faceted 
Fermi surfaces. The analysis presented in ref. 25 considered a circu-
lar Fermi surface and hence treated the orientation of the channel 
relative to the crystal axes as unimportant. The results presented 
here show that, to conclusively identify a viscous contribution to 
transport in PdCoO2, further experiments on transport bars aligned 
along both the 0° and 30° directions will be required, combined with 
analysis using realistic models of hydrodynamic transport in which 
the faceting of the Fermi surface is taken into account31–33.

Conclusions and outlook
We have shown, for the first time in a two-dimensional metal, 
that a strongly faceted Fermi surface can lead to strongly 
orientation-dependent conduction in otherwise identical ballistic 
devices cut from the same single crystal. These observations are 
of fundamental and practical importance to the question of the 
minimal attainable resistance in nanoscopic conductors, which 
ultimately limits the potential miniaturization of electric conduc-
tors in technological applications. As conductors are scaled down, 
even technologically relevant thin films enter the ballistic trans-
port regime at elevated temperature, and boundaries become an 
important source of scattering14. Our results demonstrate that the 
boundary scattering contribution in zero field can be reduced by 
over a factor of two when a 2.5-µm-wide channel is aligned with 
one of the main directions of quasiparticle propagation. This is not 
a fundamental limit. Indeed, the smallest width we have studied in 
these proof-of-principle experiments is at least an order of magni-
tude larger than the minimum that could be envisaged. For wires 
less than 10 µm long, narrowed to widths of order 100 nm, the effect 
may be much larger (see the discussion in Supplementary Note 5), 
resulting in significant gains in attainable channel conductivity 
compared with that available from materials with circular Fermi 
surfaces. Our results invite investigation of other delafossite metals 
in which there are subtle differences in the degree of Fermi surface 
faceting22 and also a thorough study of the effects of magnetic field 
on directional ballistics.

Finally, we note that the phenomena we report here are far from 
being restricted to delafossites. Materials with facetted Fermi sur-
faces are not rare. Gated bilayer graphene34 is one of the most prom-
ising platforms for extensions of this research. While the Fermi 
surface anisotropy can also be controlled in GaAs-based quantum 
wells35,36, despite its anisotropic appearance, the Fermi velocity 
distribution remains quite isotropic. Most strikingly, the in-plane 

transport anisotropy is a widely used technique to detect subtle 
symmetry-lowering electronic states such as electronic nematicity. 
The implicit assumption is based on the group-theoretical argu-
ment that the appearance of an in-plane anisotropy in transport 
necessitates that the rotational symmetry of the bulk material be 
reduced to two-fold. Our work shows that, especially in clean metal-
lic crystals, even symmetry lowering by the sample shape itself can 
induce such an anisotropic response, without any broken rotational 
symmetries in the point group of the unit cell. As mean free paths 
can indeed become macroscopic, these effects may well appear in 
traditional single crystals. This may prove to be important in the 
interpretation of unconventional transport phenomena in topologi-
cal semi-metals, which generally tend to be of high mobility. For 
example, a mean free path λ > 100 µm is readily observed in the 
Weyl II semi-metal WP2 (ref. 37), which in turn implies that even 
the sub-mm-sized single crystals used in traditional conductivity 
measurements are in a quasi-ballistic transport regime. Given the 
common deviation from circular Fermi surfaces in this materi-
als class, the effects uncovered here are likely to be of relevance to  
that field.

It will also be interesting to consider whether directional ballis-
tics plays a role in generating subtle symmetry-forbidden transport 
signals at phase transitions of strongly correlated materials, in which 
one might a priori not expect to encounter ballistic behaviour due 
to their short mean free path. However, because the most strongly 
interacting states at the Fermi level are those driving the ordered 
phase, the average lifetime of the remaining quasiparticle states 
often increases significantly upon electronic ordering. Famous 
examples of dramatic enhancements of the mean free path include 
the hidden order transition in URu2Si2

38, the nodal quasiparticles in 
YBa2Cu3O7

39 and the formation of coherent heavy fermion liquids40. 
It is interesting to note that all these microscopically distinct cor-
related transitions are associated with weak symmetry-forbidden 
anisotropies, and at the same time these phase transitions push 
these materials closer to the directional ballistics limit. In summary, 
we believe that much remains to be investigated concerning the 
physics as well as potential applicability of directional ballistics.
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