167 research outputs found

    The K+K+ Scattering Length from Lattice QCD

    Full text link
    The K+K+ scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the MILC asqtad-improved gauge configurations with rooted staggered sea quarks. Three-flavor mixed-action chiral perturbation theory at next-to-leading order, which includes the leading effects of the finite lattice spacing, is used to extrapolate the results of the lattice calculation to the physical value of m_{K+}/f_{K+}. We find m_{K+} a_{K+K+} = -0.352 +- 0.016, where the statistical and systematic errors have been combined in quadrature.Comment: 17 pages, 12 figures. NPLQCD collaboratio

    Cyber-physical systems in the re-use, refurbishment and recycling of used electrical and electronic equipment

    Get PDF
    The aim of the research outlined in this paper is to demonstrate the implementation of a Cyber-Physical System (CPS) within the End of Life (EoL) processing of Electrical and Electronic Equipment (EEE). The described system was created by reviewing related areas of research, capturing stakeholder’s requirements, designing system components and then implementing within an actual EoL EEE processer. The research presented in this paper details user requirements, relevant to any EoL EEE processer, and provides information of the challenges and benefits of utilising CPSs systems within this domain. The system implemented allowed an EoL processer to attach passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tags to cores (i.e. mobile phones and other IT assets) upon entry to the facility allowing monitoring and control of the core’s refurbishment. The CPS deployed supported the processing and monitoring requirements of PAS 141:2011, a standard for the correct refurbishment of both used and waste EEE for reuse. The implemented system controls how an operator can process a core, informing them which process or processes should be followed based upon the quality of the core, the recorded results of previous testing and any repair efforts. The system provides Human-Computer Interfaces (HCIs) to aid the user in recording core and process information which is then used to make decisions on the additional processes required. This research has contributed to the knowledge of the advantages and challenges of CPS development, specifically within the EoL domain, and documents future research goals to aid EoL processing through more advanced decision support on a core’s processes

    Precise Determination of the I=2 pipi Scattering Length from Mixed-Action Lattice QCD

    Get PDF
    The I=2 pipi scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations (with fourth-rooted staggered sea quarks) at four light-quark masses. Two- and three-flavor mixed-action chiral perturbation theory at next-to-leading order is used to perform the chiral and continuum extrapolations. At the physical charged pion mass, we find m_pi a_pipi(I=2) = -0.04330 +- 0.00042, where the error bar combines the statistical and systematic uncertainties in quadrature.Comment: 20 pages, 7 figure

    Signatures of Gate-Tunable Superconductivity in Trilayer Graphene/Boron Nitride Moir\'e Superlattice

    Full text link
    Understanding the mechanism of high temperature (high Tc) superconductivity is a central problem in condensed matter physics. It is often speculated that high Tc superconductivity arises from a doped Mott insulator as described by the Hubbard model. An exact solution of the Hubbard model, however, is extremely challenging due to the strong electron-electron correlation. Therefore, it is highly desirable to experimentally study a model Hubbard system in which the unconventional superconductivity can be continuously tuned by varying the Hubbard parameters. Here we report signatures of tunable superconductivity in ABC-trilayer graphene (TLG) / boron nitride (hBN) moir\'e superlattice. Unlike "magic angle" twisted bilayer graphene, theoretical calculations show that under a vertical displacement field the ABC-TLG/hBN heterostructure features an isolated flat valence miniband associated with a Hubbard model on a triangular superlattice. Upon applying such a displacement field we find experimentally that the ABC-TLG/hBN superlattice displays Mott insulating states below 20 Kelvin at 1/4 and 1/2 fillings, corresponding to 1 and 2 holes per unit cell, respectively. Upon further cooling, signatures of superconducting domes emerge below 1 kelvin for the electron- and hole-doped sides of the 1/4 filling Mott state. The electronic behavior in the TLG/hBN superlattice is expected to depend sensitively on the interplay between the electron-electron interaction and the miniband bandwidth, which can be tuned continuously with the displacement field D. By simply varying the D field, we demonstrate transitions from the candidate superconductor to Mott insulator and metallic phases. Our study shows that TLG/hBN heterostructures offer an attractive model system to explore rich correlated behavior emerging in the tunable triangular Hubbard model.Comment: 14 pages, 4 figure

    Tunable Correlated Chern Insulator and Ferromagnetism in Trilayer Graphene/Boron Nitride Moir\'e Superlattice

    Full text link
    Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulators with integer QH effects could appear in lattice models with complex hopping parameters even at zero magnetic field. The ABC-trilayer graphene/hexagonal boron nitride (TLG/hBN) moir\'e superlattice provides an attractive platform to explore Chern insulators because it features nearly flat moir\'e minibands with a valley-dependent electrically tunable Chern number. Here we report the experimental observation of a correlated Chern insulator in a TLG/hBN moir\'e superlattice. We show that reversing the direction of the applied vertical electric field switches TLG/hBN's moir\'e minibands between zero and finite Chern numbers, as revealed by dramatic changes in magneto-transport behavior. For topological hole minibands tuned to have a finite Chern number, we focus on 1/4 filling, corresponding to one hole per moir\'e unit cell. The Hall resistance is well quantized at h/2e2, i.e. C = 2, for |B| > 0.4 T. The correlated Chern insulator is ferromagnetic, exhibiting significant magnetic hysteresis and a large anomalous Hall signal at zero magnetic field. Our discovery of a C = 2 Chern insulator at zero magnetic field should open up exciting opportunities for discovering novel correlated topological states, possibly with novel topological excitations, in nearly flat and topologically nontrivial moir\'e minibands.Comment: 16 pages, 4 figures, and 2 extended figure

    Solar radiation and soil moisture drive tropical forest understory responses to experimental and natural hurricanes

    Get PDF
    Tropical forest understory regeneration occurs rapidly after disturbance with compositional trajectories that depend on species availability and environmental conditions. To predict future tropical forest regeneration dynamics, we need a deeper understanding of how pulse disturbance events, like hurricanes, interact with environmental variability to affect understory demography and composition. We examined fern and sapling mortality, recruitment, and community composition in relation to solar radiation and soil moisture using 17 years of forest dynamics data (2003–2019) from the Canopy Trimming Experiment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation increased 150% and soil moisture increased 40% following canopy trimming of experimental plots relative to control plots. All plots were disturbed in 2017 by Hurricanes Irma and Maria, so experimentally trimmed plots presented the opportunity to study the effects of multiple hurricanes, while control plots isolated the effects of a single natural hurricane. Recruitment rates maximized at 0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings. Recruitment and mortality were distributed more evenly over the 17 years of monitoring in experimentally trimmed plots than in control plots; however, following Hurricane Maria demographic rates substantially increased in control plots only. In experimentally trimmed plots, the largest community compositional shifts occurred as a result of the trimming events, and compositional changes were greatest for control plots after Hurricane Maria in 2017. Pioneer tree and fern species increased in abundance in response to both simulated and natural hurricanes. Following Hurricane Maria, two dominant pioneer species, Cyathea arborea and Cecropia schreberiana, recruited abundantly, but only in control plots. In trimmed plots, increased solar radiation and soil moisture shifted understory species composition steadily toward pioneer and secondary-successional species, with soil moisture interacting strongly with canopy trimming. Thus, both solar radiation and soil moisture are environmental drivers affecting pioneer species recruitment following disturbance, which interact with canopy opening following hurricanes. Our results suggest that if hurricane disturbances increase in frequency and severity, as suggested by climate change predictions, the understory regeneration of late-successional species, such as Manilkara bidentata and Sloanea berteroana, which prefer deeper shade and slightly drier soil microsites, may become imperiled

    (Correcting) misdiagnoses of asthma: A cost effectiveness analysis

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: The prevalence of physician-diagnosed-asthma has risen over the past three decades and misdiagnosis of asthma is potentially common. Objective: to determine whether a secondary-screening-program to establish a correct diagnosis of asthma in those who report a physician diagnosis of asthma is cost effective.Method: Randomly selected physician-diagnosed-asthmatic subjects from 8 Canadian cities were studied with an extensive diagnostic algorithm to rule-in, or rule-out, a correct diagnosis of asthma. Subjects in whom the diagnosis of asthma was excluded were followed up for 6-months and data on asthma medications and heath care utilization was obtained. Economic analysis was performed to estimate the incremental lifetime costs associated with secondary screening of previously diagnosed asthmatic subjects. Analysis was from the perspective of the Canadian healthcare system and is reported in Canadian dollars.Results: Of 540 randomly selected patients with physician diagnosed asthma 150 (28%; 95%CI 19-37%) did not have asthma when objectively studied. 71% of these misdiagnosed patients were on some asthma medications. Incorporating the incremental cost of secondary-screening for the diagnosis of asthma, we found that the average cost savings per 100 individuals screened was 35,141(9535,141 (95%CI 4,588-$69,278).Conclusion: Cost savings primarily resulted from lifetime costs of medication use averted in those who had been misdiagnosed.This work was funded by the Canadian Institute of Health Research, Canada and the University Of Ottawa Division Of Respiratory Medicine

    Multi-Pion States in Lattice QCD and the Charged-Pion Condensate

    Get PDF
    The ground-state energies of systems containing up to twelve π+\pi^+'s in a spatial volume V ~ (2.5 fm)^3 are computed in dynamical, mixed-action lattice QCD at a lattice spacing of ~ 0.125 fm for four different values of the light quark masses. Clean signals are seen for each ground state, allowing for a precise extraction of both the π+π+\pi^+\pi^+ scattering length and π+π+π+\pi^+\pi^+\pi^+-interaction from a correlated analysis of systems containing different numbers of π+\pi^+'s. This extraction of the π+π+\pi^+\pi^+ scattering length is consistent with than that from the π+π+\pi^+\pi^+-system alone. The large number of systems studied here significantly strengthens the arguments presented in our earlier work and unambiguously demonstrates the presence of a low energy π+π+π+\pi^+\pi^+\pi^+-interaction. The equation of state of a π+\pi^+ gas is investigated using our numerical results and the density dependence of the isospin chemical potential for these systems agrees well with the theoretical expectations of leading order chiral perturbation theory. The chemical potential is found to receive a substantial contribution from the π+π+π+\pi^+\pi^+\pi^+-interaction at the lighter pion masses. An important technical aspect of this work is the demonstration of the necessity of performing propagator contractions in greater than double precision to extract the correct results.Comment: 38 pages, 20 figure

    Modelling manufacturing processes using Markov chains

    Get PDF
    Optimizing manufacturing processes with inaccurate models of the process will lead to unre-liable results. This can be true when there is a strong human influence on the manufacturing process and many variable aspects. This study investigates modelling a manufacturing process influenced by human inter-action with very variable products being processed. To develop a more accurate process model for such pro-cesses radio frequency identification (RFID) tags can be used to track products through the process. The tags record information for each product and this data can be used to produce more accurate models of the manu-facturing process. The data produced has been used to create a Markov chain model. This model is used to predict future product paths for use in discrete event simulation. In this case an IT refurbishment company is used as a case study. RFID tags have been utilized to track the IT products moving through the refurbishment process and this information has been used to produce a Markov chain model
    corecore