1,074 research outputs found
\epsilon-regularity for systems involving non-local, antisymmetric operators
We prove an epsilon-regularity theorem for critical and super-critical
systems with a non-local antisymmetric operator on the right-hand side.
These systems contain as special cases, Euler-Lagrange equations of
conformally invariant variational functionals as Rivi\`ere treated them, and
also Euler-Lagrange equations of fractional harmonic maps introduced by Da
Lio-Rivi\`ere.
In particular, the arguments presented here give new and uniform proofs of
the regularity results by Rivi\`ere, Rivi\`ere-Struwe, Da-Lio-Rivi\`ere, and
also the integrability results by Sharp-Topping and Sharp, not discriminating
between the classical local, and the non-local situations
When predictions are used to allocate scarce health care resources: three considerations for models in the era of Covid-19.
The ethics of digital well-being: a multidisciplinary perspective
This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Engendering harm: a critique of sex selection for 'family balancing'
The most benign rationale for sex-selection is deemed to be “family balancing.” On this view, provided the sex-distribution of an existing offspring group is “unbalanced,” one may legitimately use reproductive technologies to select the sex of the next child. I present four novel concerns with granting “family balancing” as a justification for sex-selection: (a) families or family subsets should not be subject to medicalization; (b) sex selection for “family balancing” entrenches heteronormativity, inflicting harm in at least three specific ways; (c) the logic of affirmative action is appropriated; (d) the moral mandate of reproductive autonomy is misused. I conclude that the harms caused by “family balancing” are sufficiently substantive to over-ride any claim arising from a supposed right to sex selection as an instantiation of procreative autonomy
Microtubule sliding activity of a kinesin-8 promotes spindle assembly and spindle length control
Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by cross-linking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report for the first time on an anti-parallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule destabilizing activity. In conjunction with kinesin-5/Cin8, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a “slide-disassemble” model where Kip3’s sliding and destabilizing activity balance during pre-anaphase. This facilitates normal spindle assembly. However, Kip3’s destabilizing activity dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly
Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by
driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and
seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for
possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2
gradient ranging from ,0.5–250 mmol kg21 (i.e. ,20–6000 matm pCO2) at three different temperatures (i.e. 10, 15, 20uC for
E. huxleyi and 15, 20, 25uC for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth,
photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and
production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for
growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate
temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high
temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and
carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean
acidification at a given temperature can be negative, neutral or positive depending on that strain’s temperature optimum.
This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when
interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of
changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the
future ocean
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Sex-specific relevance of diabetes to occlusive vascular and other mortality : a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies
Background: Several studies have shown that diabetes confers a higher relative risk of vascular mortality among women than among men, but whether this increased relative risk in women exists across age groups and within defined levels of other risk factors is uncertain. We aimed to determine whether differences in established risk factors, such as blood pressure, BMI, smoking, and cholesterol, explain the higher relative risks of vascular mortality among women than among men.
Methods: In our meta-analysis, we obtained individual participant-level data from studies included in the Prospective Studies Collaboration and the Asia Pacific Cohort Studies Collaboration that had obtained baseline information on age, sex, diabetes, total cholesterol, blood pressure, tobacco use, height, and weight. Data on causes of death were obtained from medical death certificates. We used Cox regression models to assess the relevance of diabetes (any type) to occlusive vascular mortality (ischaemic heart disease, ischaemic stroke, or other atherosclerotic deaths) by age, sex, and other major vascular risk factors, and to assess whether the associations of blood pressure, total cholesterol, and body-mass index (BMI) to occlusive vascular mortality are modified by diabetes.
Findings: Individual participant-level data were analysed from 980793 adults. During 9 center dot 8 million person-years of follow-up, among participants aged between 35 and 89 years, 19686 (25 center dot 6%) of 76965 deaths were attributed to occlusive vascular disease. After controlling for major vascular risk factors, diabetes roughly doubled occlusive vascular mortality risk among men (death rate ratio [RR] 2 center dot 10, 95% CI 1 center dot 97-2 center dot 24) and tripled risk among women (3 center dot 00, 2 center dot 71-3 center dot 33; x(2) test for heterogeneity p<0 center dot 0001). For both sexes combined, the occlusive vascular death RRs were higher in younger individuals (aged 35-59 years: 2 center dot 60, 2 center dot 30-2 center dot 94) than in older individuals (aged 70-89 years: 2 center dot 01, 1 center dot 85-2 center dot 19; p=0 center dot 0001 for trend across age groups), and, across age groups, the death RRs were higher among women than among men. Therefore, women aged 35-59 years had the highest death RR across all age and sex groups (5 center dot 55, 4 center dot 15-7 center dot 44). However, since underlying confounder-adjusted occlusive vascular mortality rates at any age were higher in men than in women, the adjusted absolute excess occlusive vascular mortality associated with diabetes was similar for men and women. At ages 35-59 years, the excess absolute risk was 0 center dot 05% (95% CI 0 center dot 03-0 center dot 07) per year in women compared with 0 center dot 08% (0 center dot 05-0 center dot 10) per year in men; the corresponding excess at ages 70-89 years was 1 center dot 08% (0 center dot 84-1 center dot 3 2) per year in women and 0 center dot 91% (0 center dot 77-1 center dot 05) per year in men. Total cholesterol, blood pressure, and BMI each showed continuous log-linear associations with occlusive vascular mortality that were similar among individuals with and without diabetes across both sexes.
Interpretation: Independent of other major vascular risk factors, diabetes substantially increased vascular risk in both men and women. Lifestyle changes to reduce smoking and obesity and use of cost-effective drugs that target major vascular risks (eg, statins and antihypertensive drugs) are important in both men and women with diabetes, but might not reduce the relative excess risk of occlusive vascular disease in women with diabetes, which remains unexplained
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- …
