13,228 research outputs found

    Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Get PDF
    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach

    Composition of the hot plasma near geosynchronous altitude

    Get PDF
    Although there were no direct measurements of the composition of the hot (keV) plasma at geosynchronous altitudes, the combination of other observations leads to the conclusion that, at least during geomagnetically disturbed periods, there are significant fluxes of ions heavier than protons in this region. Ion composition measurements below 8000 km altitude show upward streaming fluxes of both O(+) and H(+) ions in the L-region of the geosynchronous orbit. These observations are consistent with the conclusion that at least a portion of the total ion fluxes observed at geosynchronous altitude to be highly peaked near the magnetic field lines are heavier than protons and originate in the ionosphere

    Metamorphic Conditions of an Archean Core Complex in the Northern Wind River Range, Wyoming

    Get PDF
    The Archean granulite-facies rocks of the northern Wind River Range consist of extensive granitic orthogneisses and migmatites hosting banded iron formations, amphibolites, metapelites, metabasites, ultramafites and quartzites. Quantitative pressure and temperature estimates from inclusions within garnet porphyroblasts are 815±5O%C and 8±1 kb using equilibria buffered by the assemblages spinel-quartz-garnet-sillimanite and garnet-rutile-ilmenite-sillimanite-quartz. Pressure-temperature estimates from the groundmass core assemblages of the banded iron formations and hornblende granulites are 750 ±50 %C and 5·5 ± 1 kb using garnet-clinopyroxene, garnet-orthopyroxene, and two-pyroxene thermometry, and geobarometers based on the assemblages garnet-quartz-plagioclase-orthopyroxene and orthopyroxene-olivine-quartz. Rim compositions of the matrix minerals indicate nearly isobaric cooling from the conditions of 750 %C and 5-5 kb to < 600%C at 5 kb. Taken together, the P-T estimates from both the garnet inclusions and matrix assemblages are consistent with a clockwise P-T-t path for this terrane. Temperature estimates based on oxygen isotope thermometry in the banded iron formations vary systematically with the degree of visible late-stage deformation. There is no correlation between the isotopic temperature estimates and those from cation-based thermometers. The highest pressures and temperatures for the Wind River terrane are preserved by the inclusions in garnet porphyroblasts. The ability of these inclusions to preserve chemistries corresponding to higher pressures and temperatures is attributed to the combined effects of inclusion isolation and fixed inclusion volume within the garnet porphyroblasts. Cation-based thermometers in the groundmass preserve lower temperatures as a result of diffusional partial resetting. Isotopic thermometry will yield the lowest temperatures if there is even minor retrograde deformation. Geothermobarometry for the northern Wind River Archean terrane is consistent with a tectonic regime of doubly thickened crust. Peak metamorphic conditions preserved in the cores of the garnets are compatible with deep burial during the early stages of tectonism. Rapid to intermediate uplift due to erosion of the upper plate could explain the nearly isothermal decompression from 8·0 to 5-5 kb. The later, nearly isobaric, cooling path indicated by the rim compositions of the matrix minerals is consistent with relaxation of the elevated geother

    Extreme Precision Antenna Reflector Study Results

    Get PDF
    Thermal and mechanical distortion degrade the RF performance of antennas. The complexity of future communications antennas requires accurate, dimensionally stable antenna reflectors and structures built from materials other than those currently used. The advantages and disadvantages of using carbon fibers in an epoxy matrix are reviewed as well as current reflector fabrications technology and adjustment. The manufacturing sequence and coefficient of thermal expansion of carbon fiber/borosilicate glass composites is described. The construction of a parabolic reflector from this material and the assembling of both reflector and antenna are described. A 3M-aperture-diameter carbon/glass reflector that can be used as a subassembly for large reflectors is depicted. The deployment sequence for a 10.5M-aperture-diameter antenna, final reflector adjustment, and the deployment sequence for large reflectors are also illustrated

    Analysis of satellite data on energetic particles of ionospheric origin

    Get PDF
    The morphology was studied of precipitating O(+) and H(+) ions in the energy range 0.7 equal to or less than E equal to or less than 12 keV during the storm-time period from December 16-18, 1971, which encompassed two principal magnetic storms. The results are described with emphasis on the temporal variations of parameters characterizing the intensity, average energy, and spatial location of the zones of precipitation of the two ionic species. One of the principal results was the finding that the intensity of the precipitating O(+) ions was well correlated with the geomagnetic indices which measure the strength of magnetospheric substorm activity and the strength of the storm-time ring current. Since the O(+) ions are almost certainly of ionospheric origin the correlations indicate that a previously unknown strong coupling mechanism existed between the magnetosphere and the ionosphere during the storm period

    Analysis of satellite data on energetic particles of ionospheric origin

    Get PDF
    The principal result of this program has been the completion of a detailed statistical study of the properties of precipitating O(+) and H(+) ions during two principal magnetic storms. The results of the analysis of selected data of ion mass spectrometer experiment on satellites are given with emphasis on the morphology of the O(+) ions of ionospheric origin with energies in the 0.7 les than or equal to E less than or equal to 12 keV range that were discovered with this experiment

    Observation of a westward travelling surge from satellites at low, medium and high altitudes

    Get PDF
    The motion of discontinuity; electric potential and current structure of the event; energy source and flow; wave-particle interactions; and particle acceleration are addressed using wave, electron, ion mass spectrometer, dc electric field, and magnetic field observation from the Isee-1, NOAA-6, and the 1976-059 geostationary satellite

    A discrete time-dependent method for metastable atoms in intense fields

    Full text link
    The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium and hydrogen atoms and molecules are presented. At very high intensity above saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments.Comment: 10 pages, 9 figure, 4 table

    Apollo applications program data archives

    Get PDF
    Apollo applications program data archives to collect, store, retrieve, and distribute experiments-related dat

    The swept angle retarding mass spectrometer: Initial results from the Michigan auroral probe sounding rocket

    Get PDF
    Data from a sounding rocket flight of the swept angle retarding ion mass spectrometer (SARIMS) are presented to demonstrate the capability of the instrument to make measurements of thermal ions which are differential in angle, energy, and mass. The SARIMS was flown on the Michigan auroral probe over regions characterized first by discrete auroral arcs and later by diffuse precipitation. The instrument measured the temperature, densities, and flow velocities of the ions NO(+) and O(+). Measured NO(+) densities ranged from 10 to the 5th power up to 3 x 10 to the 5th power ions/cu cm, while the measured O(+) densities were a factor of 5-10 less. Ion temperatures ranged from 0.15 up to 0.33 eV. Eastward ion flows approximately 0.5 km/sec were measured near the arcs, and the observed flow magnitude decreased markedly inside the arcs
    corecore