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Abstract 11 

Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for 12 
computing a similarity measure. Such dynamic programming-based techniques like DTW are now 13 
the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had 14 
far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not 15 
simply as a measure with which to cluster or compare similarity between features but in a 16 
conceptually different way. We have used DTW to provide a more interpretable spectral description 17 
of the data, compared to standard approaches such as the Fourier and related transforms. The DTW 18 
approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of 19 
neural dynamics. These include EEG microstates, EEG avalanches and the sum squared error (SSE) 20 
from a multilayer perceptron (MLP) prediction of the EEG timeseries, and simultaneously acquired 21 
FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-22 
FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW 23 
differentially performs in different task settings. We found that despite strong correlations between 24 
DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. 25 
Using these DTW measures, we show that predictability is almost always higher in task than in rest 26 
states, which is consistent to other theoretical and empirical findings, providing additional evidence 27 
for the utility of the DTW approach. 28 

 29 

 30 

 31 

 32 
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1 Introduction 33 

Dynamic Time Warping (DTW) has been extensively used in data mining, but also in pattern 34 
recognition and classification. It is not an overstatement to say that it is today one of the central 35 
techniques in the data mining community (Rakthanmanon et al., 2012; Ding et al., 2008; Keogh and 36 
Kasetty, 2002). DTW is a dynamic programming (DP) based technique for finding the best alignment 37 
between two time series/data sequences. It can take into account phase shifts and other non-linear 38 
changes in the timeseries, unlike the much simpler (but computationally faster) Euclidean distance 39 
based alignments (Rakthanmanon et al., 2012). While typically used in a univariate setting, it has 40 
also been successfully used in multivariate contexts as well (Górecki and Łuczak, 2015; Bankó and 41 
Abonyi, 2012). While very similar methods also based on DP have revolutionized and are core in 42 
other biological and scientific fields, especially in bioinformatics in the form of BLAST, FASTA and 43 
other sequence alignment methods (Smith and Waterman, 1981; Gotoh, 1982; Edgar, 2010; Di 44 
Tommaso et al., 2011), neuroscience has not yet explored this powerful technique nearly as much. In 45 
fact, sequence alignment is behind most of genetic, proteinogenic, phylogenetic and other molecular 46 
and genetic biology work and results. In recent years it has been picked up in conjunction with other 47 
machine learning or statistical methods for various neuroimaging and neuroscientific investigations, 48 
including improved ballistocardiogram artifact detection and removal (compared to using a template 49 
or average based artifact removal method) (Annam, Mittapalli, and Bapi, 2011; Niennattrakul and 50 
Ratanamahatana, 2007), decoding of speech from intracranial electrode recordings (Zhang et al., 51 
2012), modeling and decoding spectrotemporal feature differences for overt and covert speech from 52 
cortical recordings, (Martin et al., 2014), better discriminating ERP latency differences 53 
(Zoumpoulaki et al., 2015), to distinguish movement-related to stimulus-related activity (Perez, Kass, 54 
and Merchant, 2013) and modeling dynamic task-based functional connectivity in an EEG task 55 
(Karamzadeh et al., 2013), to name some. We hoped to explore new uses of the technique, applying it 56 
to simultaneously recorded EEG-fMRI data set, to find how it may be useful in capturing oscillatory 57 
properties of the data (for the EEG data), and how it might compare or stand next to other data 58 
analysis approaches on the same data sets, which relevant to our interests in the relationships between 59 
neural dynamics and oscillations, criticality, EEG microstates and fMRI networks. In particular, we 60 
were interested in how well DTW can be used to find how much oscillatory activity (e.g. sinusoidal) 61 
there is at specific frequencies, as opposed to the discrete fourier transform’s (DFT) non-specificity 62 
for oscillatory contribution to the derived spectrum - since DFT has no choice but to give you activity 63 
at a given frequency even if there is no specific oscillation or activity at that frequency, due to the 64 
nature of the sinusoidal (sine and cosine) basis functions used in FFT-like methods. By running what 65 
we call DTW-spectrum (see methods section), we find a more interpretable alternative to a DFT-66 
spectrum that correlates strongly with the DFT but seems to capture somewhat different dynamics 67 
(which are in fact more predictive of the SSE as well as a few of the other measures). We believe this 68 
to be relevant as many papers and researchers make claims of band power being “oscillatory activity” 69 
(Meltzer et al., 2007; Kelly et al, 2006; Klimesch et al, 2007; Osipova et al., 2006; Klimesch et al., 70 
1997). While the two may be highly correlated in most cases and there is causality in one direction 71 
(higher amplitude and more frequently observed oscillations lead to greater band power in the 72 
respective frequency band) the reverse direction is not causal.  73 

We give here a very brief outline of the general DTW method, which is the backbone of the 74 
techniques we explore in this work. DTW is a highly flexible DP-based method for comparing the 75 
dissimilarity (equivalently, the similarity) between two signals. The flexibility comes from the fact 76 
that any discretized signals can be used, as well as very long sequences. The use of dynamic 77 
programming here means that the DTW values in the 2D matrix can be defined and computed 78 
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recursively and fairly efficiently (O(n2) in the worst case, though in practice it is much faster). By 79 
caching of previously computed results in the matrix in this DP-way, in practice this leads to efficient 80 
quasi-linear or amortized linear (Salvador and Chan, 2007; Ding et al., 2007) to quadratic 81 
(asymptotically) time algorithms for solving every matrix cell. Once the matrix cells are filled, the 82 
top right corner contains the overall DTW distance between the two timeseries, and the minimum 83 
alignment or warp path is found by starting at that top right corner and greedily going left, down or 84 
left-down diagonally, until the bottom left corner of the matrix is reached – i.e. at each step taking the 85 
lowest possible cost. The warp path is not guaranteed to be unique. The warp path contains all details 86 
of the warping process, including phase shifts, stretching and squeezing of the timeseries, relative to 87 
each other, as inferred by the DTW algorithm. Figure 1 below (taken from Rakthanmanon et al., 88 
2012) illustrates how the method works, with two similar but non-identical timeseries that are mostly 89 
just phase-shifted versions relative to each other. 90 

We chose to use DTW as a similarity measure on which to base a more interpretable spectrum 91 

calculation as it is among the best distance/similarity measures in existence. It is fast with an 92 
amortized linear time running cost (Ding et al., 2008). Ding et al. (2008) point out in their thorough 93 
investigation of various similarity measures on different data set sizes and types that: “there is no 94 
evidence of any distance measure that is systematically better than DTW in general. Furthermore, 95 

Figure 1: The Figure illustrates how the DTW method works. 1A shows two timeseries, that are 
highly similar, but the blue one is lagging behind the blue one (has a negative phase relative to the 
blue one). While ED would give a fairly high alignment cost here, DTW will find a fairly low 
cost, as they are highly similar when the phase shift is accounted for. 1B shows a DP matrix for 
two similar but slightly varying signals. The (possibly non-unique) optimal alignment is found by 
finding the minimum cost path from the top right corner to the bottom left, after the DP matrix is 
calculated. Note that while no warping window is displayed here, we can place a diagonal below 
and above the main diagonal in the matrix as constraints for the warping (e.g. Sakoe-Chiba band). 
This not only speeds up the alignment (often by a factor of 10 or more), but tends to lead to more 
accurate alignment results as well. We used such a constraint band for these two reasons. 1B is 
taken from (Wong et al., 2015). 

A B 
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there is at best very scant evidence that there is any distance measure that is systematically better than 96 
DTW in on particular problems (say, just ECG data, or just noisy data)”. 97 

In order to test how well the DTW-based methods work for neuroscientific questions, we assessed 98 
them against benchmark measures of neural dynamics (that we and others have been using to study a 99 
range of neuroscience problems). The DTW-spectrum that we compute gives us a DFT-like spectrum 100 
that may be more directly related to the oscillatory/sinusoidal nature of the signal than the DFT 101 
spectrum, which can give high values in certain frequency bins even if there is no 102 
oscillatory/sinusoidal activity at that frequency. Given that neural dynamics change substantially with 103 
cognitive state, we applied the DTW approaches in two different cognitive states (a active, externally 104 
task-focused state and a more passive, “resting” state) –we found differences in the predictability of 105 
data in the two cognitive states that fits with previous results and with our hypothesis of higher 106 
predictability and more ordered neural dynamics during a task-focused state. 107 

We compared the DTW measures (and a more typical DFT approach) to our benchmark measures of 108 
neural dynamics including: the predictability of the EEG signal (SSE from a MLP), EEG microstates, 109 
EEG cascades (or “avalanches”), as well as simultaneously acquired FMRI BOLD signal. The 110 
predictability of neural signals is an important aspect of neural dynamics and varies with cognitive 111 
state – therefore, we sought to more directly quantify this by using a multi-layer perceptron (MLP) to 112 
come up with a measure of prediction error. Our working hypothesis was that prediction error, as 113 
quantified by the sum squared error (SSE) would be better predicted by the DTW than DFT and that 114 
this would be a stronger effect in task than at rest (Hellyer et al., 2014; van den Heuvel et al., 2008; 115 
Deco and Jirsa, 2012; Fagerholm et al., 2015). In a similar vein, we also sought to investigate 116 
neuronal cascades, which have been used to characterize dynamical regimes such as self-organized 117 
criticality (Shew et al., 2009; Deco and Jirsa, 2012; Fagerholm et al., 2015). We used EEG 118 
microstates as microstates have been shown to be powerful and simple multivariate approach to 119 
looking at EEG data.  Microstate duration or the specific microstate just prior to a trial during tasks 120 
correlates with EEG alpha band power, fMRI BOLD network properties and activity, ERP 121 
characteristics, behavioral measures (e.g. reaction time and miss/accuracy rate), as well as 122 
neuropathological conditions such as Alzheimer’s or Schizophrenia (Britz, Van De Ville, and 123 
Michel, 2010; Van De Ville, Britz, and Michel, 2010; Musso et al., 2010; Lehmann et al., 2005; Jann 124 
et al., 2009; Fingelkurts, 2006; Lehmann et al., 1994; Lehmann, 1989), depending on the exact 125 
microstate (type) or length. They have been called the “atoms of thought” (as EEG microstates seem 126 
to reflect both rest and task-dependent neural dynamics on longer timescales (tens to hundreds of 127 
milliseconds)) (Michel, Pascual-Marqui, and Lehmann, 2009), reflecting the discrete nature of 128 
cognitive processing and current state-dependent response to external events. Studying the 129 
relationship between the EEG and FMRI/BOLD is an increasingly active area of research, therefore, 130 
we also sought to see how well DTW (and the other measures) would relate to simultaneously 131 
acquired BOLD. 132 

2. Methods 133 

Figure 2 below shows a high level overview of the methods used and how they relate to each other. 134 
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 135 

Figure 2: Overview of the steps taken in this modeling/analysis work. The blue colored boxes show 136 
measures/results related to the EEG part of the analysis, while the yellow-orange part is for the fMRI 137 
BOLD part. The EEG measures are not all single measures - there is one SSE and one AVA measure, 138 
as well as DTW and DFT, but 2 MS-related measures. These measures are fed as they are into 139 
separate GLMs, to try to predict each of the 5 main variables (excluding the mean GFP variable that 140 
is related to the MS), using each of the others. The EEG measures were convolved with a standard 141 
double-gamma hrf before being fed into the BOLD-GLM to try to predict the dual regression stage 1 142 
timecourses (Beckmann et al., 2009). 143 

 144 

The whole preprocessing, processing and analysis pipeline is depicted graphically in Figures 2 & 3. 145 
Each step is described in more detail in its respective section below, but we outline the pipeline here 146 
briefly. We took EEG data from a simultaneous EEG-fMRI study, for which we had corresponding 147 
fMRI BOLD data recorded simultaneously. This is a dataset that has been used and published in 148 
previous work of ours (Fagerholm et al., 2015). The data involves a Choice Reaction Time (CRT) 149 
task with 5 alternating task and rest blocks from 15 subjects. For the task portion of this modeling 150 
and analysis study, we used the first task block for training the neural network (described in detail 151 
below) and the rest for testing (roughly 80-20 split for training and testing). For the rest blocks, we 152 
used the second block for training (as it was slightly longer than the other rest blocks and was 153 
therefore different to them), and the rest of them for testing.  154 

 155 

 156 

 157 

 158 
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 159 

To summarize the methods briefly: we computed the DTW-spectrum between 8 and 13Hz, out of 160 
which we took the standard deviation of it to condense the vector into a scalar – one scalar value for 161 
each trial, so that we can more directly compare this value with the SSE, DFT-spectrum’s standard 162 
deviation and other trial-wise values. We took the standard deviation for both the DTW and DFT in 163 
only the alpha band range (i.e. 8-13Hz). Where we refer to DTW, we mean the standard deviation of 164 
the DTW computed for the alpha band of the pre-trial data, and where we refer to DFT, we really 165 
mean the standard deviation of the DFT as well, unless specifically stated otherwise. We also 166 
computed 2 EEG microstate measures: the microstate length just prior to the trial (i.e. the length of 167 
the microstate at trial time). We also computed the mean global field power (GFP) of the microstate 168 
for the trial, as well as EEG avalanche/cascade length for the trial/just prior to the trial. We computed 169 
the mean GFP as the GFP is a measure of the spatial standard deviation of electrical scalp potential 170 
and we thought this could be another meaningful measure alongside the microstate length prior to the 171 
trial. 172 

Figure 3 Figure 3A (top left) shows the training error curve for the MLP. We used only 
networks that went below a certain training set SSE. 3B (top right) shows the SSE on the y-
axis plotted against the trial number on the x-axis. Note the erratic sudden spike in SSE in the 
last block for this run of the modeling on this subject. To reduce the effect of hard-to-predict 
variable model-dependent effects that could arise, we averaged our results across 10 runs for 
task and rest predictions both. Figure 3C and 3D (bottom left and bottom right, respectively) 
shows the actual EEG signal (down sampled from raw) in blue and the prediction of it in red 
for two different trials of two different subjects. Note that prediction follows the general trend 
well. 
Provisional
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We ran the whole pipeline and modeling 20 times, averaging the relevant results from each run, 173 
mainly to minimize randomization-related noise due to model training. We note that we validated the 174 
results by running a few 20-repetition averages according to the entire pipeline here, but, unless 175 
otherwise noted, report only details and results from a single representative 20-rep average run of the 176 
pipeline and modeling.  177 

1.1 Preprocessing 178 

1.1.1 EEG data preprocessing 179 

The starting EEG data was the same data used in (Fagerholm et al., 2015). MRI induced and 180 
amplified artifacts (gradient switching, RF flip, cardioballistic) were removed using the BrainVision 181 
Analyzer 2 software from Brain Products GmbH as described in our previous paper. So that we 182 
remove some reference-specific bias we re-referenced the data to an average reference. Next, because 183 
there were some strong artifacts remaining in the data that highly affected training and predictions 184 
with the MLP as well as the computation of EEG microstates, we ran an additional cleaning step 185 
using the Artifact Subspace Reconstruction (ASR) method (Mullen et al., 2013), which removes and 186 
reconstructs sections of data that are deemed “bad”. The clean_rawdata tool that implements ASR in 187 
EEGLAB also removes channels deemed too noisy during ASR. Finally, to speed up and improve 188 
training and prediction we down sampled the resulting ASR-cleaned data to a sample rate of 50Hz to 189 
speed up training and analysis. 190 

1.2 Measures and analysis 191 

1.2.1 MLP EEG prediction 192 

We used a multilayer perceptron to predict EEG time courses because the MLP model is relatively 193 
simple to implement, train and test while still being a powerful non-linear model. We note that other 194 
statistical approaches could also be applied (and may be more successful), e.g., auto-regressive 195 
models. However, we are not interested in optimizing predictive accuracy, per se, but rather the 196 
relative associations to different measures (e.g., DTW and DFT) and different cognitive states. 197 

The neural net is a single hidden layer multi layered perceptron (MLP) as implemented by the 198 
Rasmus MATLAB toolbox (Palm, 2012) using tanh-based activations, no regularization, a single 199 
hidden layer of the same size as the input layer and trained using gradient descent in batch mode 200 
(batch size=50). In order to improve prediction, we fed a block of points to the MLP (40 lagged 201 
points, for a total of 41 data points – the time point just before the time point to be predicted, plus the 202 
40 points prior to that one). The MLP training ends up placing greater weighting on more recent time 203 
points and less on ones from further in the past as a result of the training, but the lagged points 204 
increase the prediction accuracy. We took the MLP prediction errors, as quantified by the sum 205 
squared error for each trial, and tried to predict these trial-wise SSEs using the standard deviation of 206 
the DFT power per trial (from here on referred to simply as “DFT”), the standard deviation of the 207 
DTW-spectrum (from here on referred to only as “DTW”) and EEG-based avalanches/cascades as 208 
well as EEG microstate-derived measures of the trial-preceding microstate length and trial-preceding 209 
mean GFP power. We show an example of how we initially confirmed whether the training was 210 
working in the Figure 4. We set a fairly strict threshold for the training error and re-trained a new 211 
neural net if the training error was above this training set error threshold. We also visually confirmed 212 
(as shown in Figure 3) that the predicted and the actual EEG signals match well enough. 213 
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We used approximately 1 minute long blocks of task or rest data to train and test a multi-layered (1 214 
or 2 hidden layers) MLP for predicting the next time point separately in task and rest blocks (i.e. 215 
different models were trained for task and for rest). We trained a new model for each individual for 216 
each model run. The MLP was trained by being provided a block of points (ultimately 50 points) 217 
prior to each trial, from multiple channels simultaneously (ultimately 1 channel was used for the 218 
group-level results presented, as the prediction becomes noisier with more included channels), to 219 
predict up to n points in the future. However, though we could predict significantly well a few points 220 
ahead even with multiple channels with 40 lagged points, we used only 1 channel to keep the 221 
prediction errors lower and cleaner and as the focus is not on predicting the EEG time series as far 222 
into the future as possible but to look at periods of predictability (although we note that it also 223 
predicts above change with time points beyond t+1, with worsening error performance). A single 224 
channel’s prediction and dynamics was deemed sufficient for this. 225 

1.2.2 Training 226 

The training data consisted of the following: for each trial within the task blocks we used data 1s 227 
prior to the trial. Starting from trial time – 1s to the trial point, the points were used to predict the 228 
next time point right after the points used to predict the predicted point. For rest blocks, there was 229 
still a “trial point” recorded and used for convenience, though it was a rest trial and no stimulus was 230 
actually shown to the subjects. 231 

1.2.3 Model repetition 232 

The MLP parameter space (number of hidden layers, number of nodes per layer, L2 regularization 233 
penalty, etc.) was determined manually in a pilot phase on a subset of the data, prior to applying to  234 
the full data in the automated pipeline.. To prevent local-minima adversely affecting the results, we 235 
applied a testing-set error threshold to the training error during the backprop training. If the error was 236 
greater than the threshold, we retrained a new model and repeated this until a sub-threshold model 237 
was found. Our focus was not to validate the generalizability of the MLP; therefore, we did not 238 
perform full model cross validation but did repeat the modeling and GLMs each 10 times, averaging 239 
the resulting beta coefficients where appropriate.  240 

We re-ran the whole pipeline multiple times with a number of different parameter choices. Presented 241 
are representative results from an averaging of 20 runs, averaging across results to minimize noise 242 
due to randomization steps inherent in the MLP training as well as the k-means clustering used for 243 
the microstates. 244 

1.2.4 DTW measures 245 
Next we describe exactly the DTW-based measure that were computed and used. .  246 

The DTW-spectrum is computed as illustrated and described in Figure 5. In short, it is a direct 247 
computation of how similar the signal is to sines at different frequencies. Unsurprisingly, this 248 
resulted in a spectrum that highly (inversely) correlated with a DFT spectrum computed as usual. In 249 
other words, the stronger the value at a given frequency bin of the DFT/FFT, the smaller the value of 250 
the DTW-sine value at that frequency bin (since the DTW-sine is measuring dissimilarity). Though 251 
the DFT/FFT measures similarity and the DTW-sine dissimilarity, they are expected to provide 252 
highly inversely correlated results (just mutually inverted spectra). However, the two methods do not 253 
produce identical results. The DFT/FFT is not and cannot guarantee that high values at a given 254 
frequency can be interpreted as suggesting high amounts of activity at that frequency. In contrast, the 255 
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DTW-sine spectrum is more directly interpretable due to the different nature of the method, where 256 
there is a direct similarity comparison between a sine wave at a given frequency and a small stretch 257 
of the (EEG) signal.  258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

To compute a truer spectrum (compared to DFT’s output) of the data, we run DTW against sine 278 
waves in a range of frequencies, of the same length as the data that is fed in, with linear step size for 279 
the frequency change. This gives us a distance measure of the pre-trial data against each sine 280 
frequency. Figure 4 above below illustrates this approach. The result from this algorithm is a vector 281 
of DTW distances for each sine frequency, with the resulting values and plot being the DTW-282 
spectrum. It is strongly inverse correlated to DFT, but not identical (see Figure 5 and results). We 283 
also tried sawtooth waves at matching frequencies but the results were not nearly as predictive or 284 
clear as with sines and all further results are discussed only in reference to DTW-sine-spectrum. We 285 

Figure 4: The Figure demonstrates the computation of the DTW-spectrum. 
We generate progressively higher frequency sine waves in a loop, and for 
each one run DTW of the EEG pre-trial data against that particular sine 
wave. The resulting distance measure is the distance/dissimilarity between 
the EEG pre-trial data for that trial and that frequency. If we plot the 
distance/dissimilarity measures derived for each sine frequency comparison, 
we get a plot like the one on the bottom-right, which shows what we call the 
DTW-spectrum. It is almost a horizontal reflection of a DFT-spectrum but 
appears to capture slightly different (more specific) dynamics. For the 
statistical GLM modeling, we took the standard deviation of the DTW-
spectrum and DFT-spectrum to condense each spectrum to a single value for 
each trial. 
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tried a range of warping window sizes but ultimately used a warping window of size 20 for DTW-286 
spectrum calculation. In order to reduce the DFT-spectrum to a single value for each trial (to be 287 
compared to and useable alongside the other measures), we computed the standard deviation of the 288 
spectrum for use in the statistical modeling (GLMs) in the next part. This of course removes a lot of 289 
potentially interesting details but makes modeling easier and still retains some of the relevant 290 
dynamics. Ideally, we would have done more sophisticated modeling taking the exact spectra and 291 
entire distributions into account. 292 

1.2.5 Microstates 293 
Microstates were computed in a standard way (Michel, Pascual-Marqui, and Lehmann, 2009; Van De 294 
Ville, Britz, and Michel, 2010) by first computing the Global Field Potential (GFP) across all 295 
channels (post extra cleaning steps that we applied to the EEG), followed by GFP max peak 296 
detection, followed by clustering of these max peak positions (for which we used K-means with 297 
n=12). We fed into the K-means the EEG data at the peaks of the GFP, as this is where the maximal 298 
signal-to-noise ratio tends to be (Van De Ville, Britz, and Michel, 2010). We then had a labeled GFP-299 
peak time course for each individual. We took the scalp maps (EEG values at all electrodes) at each 300 
of these GFP-max positions, concatenated across all subjects to form a group-level map set, and did 301 
K-means clustering on this to determine the most consistent maps on a group-level (n=12 maps). 302 
Once these 12 maps were found, we then went back to each subject and compared each timepoint of 303 
the GFP/EEG timecourse with these 12 maps, assigning at each EEG timepoint the map that was 304 
closest to the EEG topography at that point. From this we extracted the microstate immediately 305 
preceding a trial (whether in rest or task blocks). We then counted how many times points (or the 306 
length) of this microstate immediately prior to the trial. We also looked at the mean GFP power of 307 
this microstate prior to the trial, as a measure of the mean spatial standard deviation during/just prior 308 
to the trial. Both of these measures are used in every GLM. 309 

1.2.6 Model averaging 310 

For both task and rest blocks, we collected all measures across the 20 repetitions of the model 311 
creation and prediction, averaging the results of those. We then used these 20-rep-averaged model 312 
values in the GLMs. 313 

1.2.7 Avalanche/cascade 314 

Avalanches, or cascades, were computed as described in detail in (Meisel et al., 2013; Fagerholm et 315 
al., 2015). In brief, the z-transformed channel data is thresholded at a standard deviation of 3.2, 3.5 or 316 
3.7, depending on the number of avalanches detected using the point process based detection and a 317 
bin width of 2. We selected these SD thresholds in order to have the number of avalanches be 318 
roughly equal to the number of trials, to avoid losing a great deal of information when subsequently 319 
downsampling to fully match to the number of trials (n=112). 320 

1.2.8 fMRI data preprocessing 321 
The same fMRI preprocessed data was used as in (Fagerholm et al., 2015). We ran this preprocessed 322 
data through stage 1 of FSL’s dual regression (Beckmann et al., 2009) using the Smith IC20 ICA 323 
maps (Smith et al., 2009). These ICA maps are spatial maps representing statistically related signals 324 
across brain regions (as imaged and recorded using fMRI) during rest, which are known to be 325 
relevant (appear to active or deactivate – or generally correlate) for both task and resting cognitive 326 
conditions. These are commonly used fMRI maps. The FSL toolkit’s dual regression stage 1 then 327 
extracts subject-specific time courses for each of these fMRI ICA spatial maps. This allows us to 328 
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look at subject-specific correlations between activity (in time/trials) in these spatial maps and other 329 
variables of interest (in time/trials). 330 

2 Results 331 

We compared the DTW measures (and more typical DFT approaches) to our benchmark measures of 332 
neural dynamics including: the predictability of the EEG signal (SSE from a MLP); EEG microstates, 333 
EEG cascades (or “avalanches”), as well as simultaneously acquired FMRI BOLD signal. Below, we 334 
examine each of these relationships in turn comparing both DTW and DFT with the benchmark 335 
measures in the two cognitive states (as well as compare the benchmark measures with each other). 336 

We used a data set where we had alternating blocks of task periods and rest periods in order to be 337 
able to make a cognitively meaningful comparison and application of the methods here. As discussed 338 
previously, we wanted to see whether we could confirm and add additional evidence to the prevailing 339 
view that resting states are more variable and less predictable than task states. We present the results 340 
for task followed by rest group level results for each variable of interest. For each, we performed 341 
FDR-correction on p-values from a standard one-sample t-test on the GLM beta coefficients, as well 342 
as permutation testing on those post-GLM (and pre-FDR) p-values. We show both results in separate 343 
heat maps, for both task and rest. In Figure 5 and Figure 6 we show FDR-corrected and permutation-344 
testing-derived p-values, respectively, for prediction on the task blocks. Figure 7 and 8 show the 345 
FDR-corrected and permutation-testing-derived p-values, respectively, for prediction on the rest 346 
blocks during the task. The Figures are presented in the form of heat maps that show brighter/hotter 347 
colors for lower p-values. More detailed listing of p-values and results follows the heat map Figures, 348 
where in each case we first mention specifics of task, followed by specific results for the rest blocks. 349 
In each sub-section of specific results, we follow the ordering of the heat map variables – reporting 350 
results for DTW, DFT, SSE, MS, GFP and AVA, in that order. All group-level results are FDR-351 
corrected with alpha=0.05. We also note that all p-values reported, unless otherwise stated, are either 352 
FDR-corrected or permutation-tested p-values on a group-level.  353 
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 355 

Figure 5: A heatmap showing FDR-corrected group-level p-values from the t-tests on the GLM-
derived beta coefficients of the task blocks. The hotter the color (i.e. the closer to white) the closer 
the value is to 0. The diagonals are all set to 0, for clarity. Provisional
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 364 

 365 

Figure 6: A heatmap showing permutation tested group-level p-values from the t-tests on the GLM-
derived beta coefficients of the task blocks. The hotter the color (i.e. the closer to white) the closer 
the value is to 0. The diagonals are all set to 0, for clarity. Provisional
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Figure 7: A heatmap showing FDR-corrected group-level p-values from the t-tests on the GLM-
derived beta coefficients of the rest blocks. The hotter the color (i.e. the closer to white) the closer the 
value is to 0. The diagonals are all set to 0, for clarity. 
Provisional
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 377 

 378 

2.1 DTW-spectrum vs DFT-spectrum overview 379 

We start by comparing in some more detail the DTW and DFT spectra, as these are a) conceptually 380 
the most similar to each other and b) DFT is the best understood and most-widely known from the 381 
methods we apply here. We remind here that the DTW spectrum here is a measure of how similar the 382 
EEG signal is to various sinusoids (as that is how the spectrum is computed). In Figure 6A, we show 383 
a DFT spectrum and the corresponding DTW spectrum, for a range of frequencies between 8 and 384 
13Hz for one subject in three different trials (subject level data within a single model run). We 385 
observed this correlation between the DFT and DTW spectra in all subjects during both pre task and 386 
pre rest blocks, though resting blocks showed a (very slightly) weaker correlation. 387 

 388 

 389 

Figure 8: A heatmap showing permutation tested group-level p-values from the t-tests on the GLM-
derived beta coefficients of the task blocks. The hotter the color (i.e. the closer to white) the closer 
the value is to 0. The diagonals are all set to 0, for clarity. Provisional
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Figure 9: In Figure 9A and 9B here, we show the inverted nature of the DTW spectrum 
compared to the DFT spectrum for two different trials within a single subject. We see the same 
pattern/behavior of the DTW vs DFT in all trials in all subjects that we have looked at. 9A and 
9B show on the x-axis the frequency and on the y-axis the DTW distance or DFT power at that 
frequency bin. If we take the DTW-spectrum frequency bin with the lowest distance (best 
matching one) and the highest power DFT frequency bin (best matching one) and plot those for 
all trials, in one subject, we get Figure 9C. Note that while the best matching frequencies nicely 
align along the diagonal (as they should if we get the same or nearly the same results with the 
DTW-spectrum and the DFT-spectrum), there are quite a few differences as well. We suggest 
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Figure 9 shows a specific subject’s comparison between DFT-spectrum and DTW-spectrum. It shows 391 
that one is roughly the inverted version of the other, but the two are not identical 392 

 393 

2.2 DTW GLM results 394 

As expected, on a group-level, for the task condition, we find that the DTW is best predicted by the 395 
DFT (FDR-corrected p-value<10-10 and permutation p-value=0.0002), though the SSE contributes 396 
additional explanatory power (FDR p-value<0.0003 and permutation p-value=0.0006). We note that 397 
the permutation testing suggests that the variance in DTW explained by the DFT and SSE may 398 
actually be of similar importance. 399 

For the rest predictions, we find a similar pattern, with the DFT contributing possibly marginally 400 
more towards explaining the variability in the DTW (FDR p<10-13 and permutation p=0.0002) and 401 
p<10-6, respectively), than the SSE (FDR p-value<10-6 and permutation p-value=0.0002). 402 

We note here that the DTW seems predictable in no small part also by the SSE, as opposed to our 403 
original expectation that the DFT would be sufficient (as they are highly inversely correlated). Since 404 
the GLM is taking into account all variables at the same time, this implies that both variables are 405 
adding useful model-explained variance – and indeed, similar amounts, towards modeling the DTW 406 
variance. 407 

2.3 DFT GLM results 408 

For the task block predictions here, we find the same pattern as above, with the DTW and DFT. In 409 
other words, measure most predictive of the DFT is the DTW (FDR p-value<10-10 and permutation p-410 
value~0), though the SSE seems to explain some additional variance not accounted for by the DTW 411 
variable (FDR p-value<0.009 and permutation p-value=0.0092). 412 

For the rest block predictions, we find that the only variable predictive of the DFT is the DTW (p<10-413 
11 for FDR and p~0 for the permutation test results). 414 

We point out the main result here is not so much that the DTW is predictive of the DFT (which it is), 415 
but that the DTW is more predictive of the DFT (lower p-values from GLM) than the DFT is of the 416 
DTW. We also note that the task predictors are stronger than the rest predictors. We find both effects 417 
to be mostly consistent across repeated 20-model-averagings that we performed to validate these 418 
results. 419 

2.4 SSE GLM results 420 

For task block predictions, we find that both the DTW and the DFT are the sole predictors of SSE 421 
(p=0.0011 and p=0.0013 for the FDR and p=0.0004 and p=0.0006 for the permutation test results). 422 
Note that the DTW is slightly more predictive than the DFT. 423 

For the rest block predictions, we find that the only variable predictive of SSE is DTW (p<10-8 for 424 
FDR and p~0 for the permutation test results). 425 

Provisional



Novel modeling of task versus rest brain state predictability using dynamic time warping 

 18 This is a provisional file, not the final typeset article 

We find that the DTW outperforms the DFT in predicting SSE, in both task and rest conditions. Also, 426 
we find a higher predictability (across all variables) in the task blocks than in the rest blocks of the 427 
task. 428 

2.5 Microstate length GLM results 429 

For task predictions, we find that the only weak predictor of the microstate length of the trial is the 430 
mean GFP power (FDR-corrected p-value<0.05 and permutation p-value=0.0646).  431 

In the rest predictions, we find a marginally stronger prediction of the GFP to the microstate length 432 
(FDR p-value=0.033 and permutation p-value=0.0468). 433 

It is almost certain that this difference in predictability between rest and task here is due to noise and 434 
randomness, rather than a real effect between task and block states, as we found variation by running 435 
multiple 20-run averages and we found at times the task predictability to be higher (i.e. lower p-436 
values for the task case). 437 

2.6 Mean Global Field Power GLM results 438 

Interestingly, we find a much stronger effect in the other direction, with the microstate length being a 439 
significantly powerful predictor of the mean GFP power (FDR p-value=0.00028 and permutation p-440 
value=0.0002), in the task condition. 441 

In the rest condition, we find a similarly more powerful effect in this direction between the mean 442 
GFP and the microstate length (FDR p-value=0.0052 and permutation p-value=0.007). 443 

In this instance, we found a regular higher predictability (lower p-values) in the task condition than in 444 
the rest condition, also in other 20-run averages that we looked at. 445 

2.7 Avalanche length GLM results 446 

We report no significant and consistent predictors of the avalanche length immediately prior to the 447 
trial from any of the measures we used here, but some runs, and on some subjects, we found 448 
significant effects of microstate length on avalanche length, and visa versa. This effect could make 449 
biological sense and is potentially interesting, but we do not discuss it further here as it was not 450 
consistently observed and in any case not on the 20-run average results that we report here. 451 

2.8 BOLD GLM results 452 

There were very few to no consistently strong effects that remain on a group-level after averaging 453 
results from the 20 runs, as presented here. There were stronger individual effects or group effects 454 
with fewer averaging, however these were not always consistent across validation repetitions of the 455 
20-run averaging that we discuss here. Any consistent (but weak) results may or may not have 456 
potential significance. 457 

Nevertheless, for completeness, we summarize all potentially useful and interesting results that we 458 
found. The most consistent effects tended to be the microstate length or mean GFP. For example, in 459 
the 20-run average results we are reporting and discussing here, for the RSN14 GLM (which (Smith 460 
et al., 2009) claim is biologically plausible as a fairly deep thalamus/caudate region - but may also be 461 
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artefactual due to blood vessels), the mean GFP power has an FDR p-value=0.06322 and permutation 462 
p-value=0.0698 in the task condition. 463 

Though we generally find higher predictability (especially in the EEG data) in task than in rest 464 
blocks, we find the opposite here. This is probably due to the nature of the resting state networks 465 
extracted from the BOLD data. Because these were taken during and apply especially to RSNs, they 466 
are more likely to be expressed during the resting blocks, as we find. We find few consistently very 467 
strong effects, but there are multiple weak but consistent effects that we’ve found. For the RSN12 468 
GLM we found DTW to be slightly explanatory of the variance of the RSN (FDR p-value=0.0996, 469 
permutation p-value=0.141), RSN17 has the avalanche length as the strongest and only noticeable 470 
regressor (FDR p-value=0.02055, permutation p-value=0.032). RSN12 is not identifiable to a 471 
specific functional network but may be a combination of multiple biologically plausible functional 472 
networks (Smith et al., 2009) but RSN17 is of clearly blood vessel-related artefactual origin. 473 

3 Discussion 474 

DTW is a powerful, flexible domain-general method for comparing sequences that has considerable 475 
potential for better characterizing neural signals. The purpose of this study was to see whether we 476 
could use DTW in novel ways to study brain dynamics, measured with EEG and FMRI. We 477 
reanalyzed an existing simultaneous and combined EEG-fMRI dataset (Fagerholm et al, 2015) to 478 
explore how useful DTW is at predicting a range of measures describing neural dynamics and how 479 
they are affected by cognitive state: including standard DFT approaches, the predictability of the 480 
EEG signal based on neural networks, EEG microstates, point-process neuronal avalanches, 481 
simultaneously acquired BOLD signal. We showed that DTW is generally the best predictor of other 482 
measures than any other (with the exception of avalanche length and microstates which weakly 483 
predicted each other in some cases). The DTW was also useful at comparing rest with active 484 
cognitive task states, where (as we predicted based on Fagerholm et al. 2015) DTW was a better 485 
predictor during task than rest, though other predictors displayed the same pattern of higher task 486 
predictability than rest predictability. 487 

The DTW-spectrum resulted in a spectrum highly correlated to a standard DFT-computed spectrum 488 
but it also demonstrated additional variability in the data not accounted for by the DFT. This suggests 489 
that DTW may be a more useful and a more interpretable spectrum in the sense of how DFT is 490 
typically used – i.e., showing how much of a given frequency there is in a signal. The DTW-491 
spectrum is more interpretable directly in this sense, compared to the DFT signal. The DTW measure 492 
seemed to more consistently and more strongly predict other variables  493 

We also add evidence to and confirm our initial general hypothesis that task states are more 494 
predictable and predictive contrasted to resting states using DTW measures. Though some variables 495 
of interest (like the DTW-spectrum and DFT-spectrum) are mutually predictive of each other 496 
strongly in both rest and task conditions, there are stronger effects in the task condition. 497 

We also noted an interesting effect that we did not specifically expect or look for, correlating the 498 
trial/pre-trial microstate length and the trial/pre-trial mean GFP. In particular, we noted that the 499 
microstate length consistently and strongly predicted the mean GFP. Because this was not the focus 500 
of the study, we only suggest in passing that this could be because the longer the microstate is, the 501 
more likely it is to shift to another microstate, as microstates do not tend to persist for more than 502 
about 100ms on average. Perhaps the longer the brain is in a certain global state (characterized by a 503 
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given microstate), the more it attempts to shift to another microstate or global state, characterized by 504 
increased GFP and changing topography.  505 

It is well recognized that noise has a substantial effect on MLP model training and may have 506 
contributed to some of the spurious associations. On the other hand, most of the strong associations 507 
are so far beyond chance (e.g. p<10-10) that this is certainly not causing all associations observed. 508 
Therefore, having a cleaner dataset  (not acquired simultaneously with FMRI) would help in 509 
decreasing the likelihood of noise driving any association. We would like to repeat and re-run this 510 
modeling and analysis pipeline on cleaner EEG-fMRI data sets as well as explore the use of the 511 
DTW-spectrum and other DTW-based techniques on other types of data sets and problems as well, as 512 
the DTW-spectrum approach is likely to prove useful beyond the uses explored here. 513 

We conclude by remarking that DTW is an underexplored method for neuroscientific investigations 514 
which can be flexibly used not only to assess sequence similarity (and e.g., subsequent clustering of 515 
those sequences), as originally developed but also to aid characterizing the frequency spectrum of 516 
neural signals. We speculate that this marginally but significantly higher predictive power of the 517 
DTW-spectrum measure may be due to its ability to capture more oscillatory/sinusoidal dynamics 518 
compared to a DFT-type typical spectrum. Whether the differences between the DTW-spectrum and 519 
the corresponding DFT spectrum are indeed differences of oscillation vs non-oscillation dynamics 520 
differentially captured by the two methods remains an open question, but one worth investigating 521 
further, as an affirmative answer here would suggest that the method may be highly applicable to the 522 
study of all sorts of oscillatory systems. 523 

 524 
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