597 research outputs found

    Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    Get PDF
    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) at Johnson Space Center in Houston, TX have used a local data integration system (LDIS) as part of their forecast and warning operations. The original LDIS was developed by NASA's Applied Meteorology Unit (AMU; Bauman et ai, 2004) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather feature

    Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS

    Get PDF
    Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files

    Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    Get PDF
    The National Weather Service Forecast Office in Melbourne, FL (NWS MLB) is responsible for providing meteorological support to state and county emergency management agencies across East Central Florida in the event of incidents involving the significant release of harmful chemicals, radiation, and smoke from fires and/or toxic plumes into the atmosphere. NWS MLB uses the National Oceanic and Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to provide trajectory, concentration, and deposition guidance during such events. Accurate and timely guidance is critical for decision makers charged with protecting the health and well-being of populations at risk. Information that can describe the geographic extent of areas possibly affected by a hazardous release, as well as to indicate locations of primary concern, offer better opportunity for prompt and decisive action. In addition, forecasters at the NWS Spaceflight Meteorology Group (SMG) have expressed interest in using the HYSPLIT model to assist with Weather Flight Rules during Space Shuttle landing operations. In particular, SMG would provide low and mid-level HYSPLIT trajectory forecasts for cumulus clouds associated with smoke plumes, and high-level trajectory forecasts for thunderstorm anvils. Another potential benefit for both NWS MLB and SMG is using the HYSPLIT model concentration and deposition guidance in fog situations

    A comparison of postrelease survival parameters between single and mass stranded delphinids from Cape Cod, Massachusetts, U.S.A.

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Mammal Science 32 (2016): 161–180, doi:10.1111/mms.12255.The viability of healthy single stranded dolphins as immediate release candidates has received little attention. Responders have been reluctant to release lone delphinids due to their social needs, even when they pass the same health evaluations as mass stranded animals. This study tracked postrelease success of 34 relocated and released satellite tagged delphinids from single and mass strandings. Three postrelease survival parameters (transmission duration, swim speed, and daily distance) were examined to evaluate whether they differed among single stranded/single released (SS/SR), mass stranded/single released (MS/SR), or mass stranded/mass released (MS/MR) dolphin groups. Comparisons were also made between healthy and borderline release candidates. Satellite tags transmitted for a mean of 21.2 d (SD = 19.2, range = 1–79), daily distance traveled was 42.0 km/d (11.25, 20.96–70.72), and swim speed was 4.3 km/h (1.1, 2.15–8.54). Postrelease parameters did not differ between health status groups, however, SS/SR dolphins transmitted for a shorter mean duration than MS/MR and MS/SR groups. Postrelease vessel-based surveys confirmed conspecific group location for two healthy, MS/SR dolphins. Overall, these results support the potential to release healthy stranded single delphinids; however, further refinement of health assessment protocols for these challenging cases is needed.National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NOAA NMFS); John H. Prescott Marine Mammal Rescue Assistance Program Grant Numbers: NA11NMF4390078, NA11NMF4390079, NA11NMF439009

    Hematological, biochemical, and morphological parameters as prognostic indicators for stranded common dolphins (Delphinus delphis) from Cape Cod, Massachusetts, U.S.A.

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Mammal Science 30 (2014): 864–887, doi:10.1111/mms.12093.The current paucity of published blood values and other clinically relevant data for short-beaked common dolphins, Delphinus delphis, hinders the ability of veterinarians and responders to make well-informed diagnoses and disposition decisions regarding live strandings of this species. This study examined hematologic, clinical chemistry, and physical parameters from 26 stranded common dolphins on Cape Cod, Massachusetts, in light of their postrelease survival data to evaluate each parameter's efficacy as a prognostic indicator. Statistically and clinically significant differences were found between failed and survived dolphins, including lower hematocrit, hemoglobin, TCO2, and bicarbonate and higher blood urea nitrogen, uric acid, and length-to-girth ratios in animals that failed. In general when compared to survivors, failed dolphins exhibited acidosis, dehydration, lower PCVs, and decreased body condition. Additionally, failed dolphins had the highest ALT, AST, CK, LDH, GGT, and lactate values. These blood values combined with necropsy findings indicate that there are likely a variety of factors affecting postrelease survival, including both preexisting illness and stranding-induced conditions such as capture myopathy. Closer evaluation of these parameters for stranded common dolphins on point of care analyzers in the field may allow stranding personnel to make better disposition decisions in the future.The John H. Prescott Marine Mammal Rescue Assistance Program provided support for stranding response efforts during this study period (Grants: NA11NMF4390078, NA11NMF4390079, NA11NMF4390093). We would like to thank the Pegasus Foundation and Barbara Birdsey for their support and funding for the IFAW Satellite Tag Program. This project would not have been possible without a summer research grant from the US Army Medical Research and Material Command through Tufts Cummings School of Veterinary Medicine (TCSVM)

    Google haul out : Earth observation imagery and digital aerial surveys in coastal wildlife management and abundance estimation

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bioscience 67 (2017): 760–768, doi:10.1093/biosci/bix059.As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.We would like to thank generous support from International Fund for Animal Welfare, the Bureau of Ocean Energy, and the Oak Foundation for funding support for the telemetry devices

    Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response

    Get PDF
    In mammals, photoreception is restricted to cones, rods and a subset of retinal ganglion cells. By contrast, non-mammalian vertebrates possess many extraocular photoreceptors but in many cases the role of these photoreceptors and their underlying photopigments is unknown. In birds, deep brain photoreceptors have been shown to sense photic changes in daylength (photoperiod) and mediate seasonal reproduction. Nonetheless, the specific identity of the opsin photopigment ‘sensor’ involved has remained elusive. Previously, we showed that vertebrate ancient (VA) opsin is expressed in avian hypothalamic neurons and forms a photosensitive molecule. However, a direct functional link between VA opsin and the regulation of seasonal biology was absent. Here, we report the in vivo and in vitro absorption spectra (λmax = ∼490 nm) for chicken VA photopigments. Furthermore, the spectral sensitivity of these photopigments match the peak absorbance of the avian photoperiodic response (λmax = 492 nm) and permits maximum photon capture within the restricted light environment of the hypothalamus. Such a correspondence argues strongly that VA opsin plays a key role in regulating seasonal reproduction in birds

    Academic boredom among students in higher education: a mixed-methods exploration of characteristics, contributors and consequences

    Get PDF
    Academic boredom contributes usually adversely towards student engagement, learning and overall performance across a diverse range of settings including universities. The formal study of academic boredom in higher education remains, however, a relatively underdeveloped field and one surprisingly neglected in the UK. Adopting contemporary perspectives rooted in Control-Value Theory, details of a mixed-methods exploration of academic boredom among 235 final year undergraduates attending a single university in England are presented. Quantitative data from the principal survey instrument employed included measurement using the BPS-UKHE, a revised boredom proneness scale developed for use across the sector. Qualitative data arose primarily from ten research interviews. Findings indicate that about half of all respondents reported experiencing the most common precursors of academic boredom at least occasionally (e.g. monotony, repetition, time slowing down, lack of desire for challenge, loss of concentration and motivation to learn, restlessness); traditional lectures with a perceived excess and inappropriate use of PowerPoint stimulating the actual onset of boredom more than other interactive forms of delivery. Coping strategies when bored included daydreaming, texting and turning to social media. Boredom also occurred during the completion of assignments used to assess modules. Quantitative and qualitative differences between those identified as more prone to boredom than others extended to self-study (fewer hours), attendance (good rather than excellent) and final degree outcome (lower marks and a lower proportion of first and upper second class degree awards). Findings are considered valuable empirically, as well as theoretically, leading to recommendations surrounding boredom mitigation which challenge cultural traditions and pedagogical norms
    • …
    corecore