29 research outputs found

    Lewy Body Dementia Association’s Research Centers of Excellence Program: Inaugural Meeting Proceedings

    Full text link
    Abstract The first Lewy Body Dementia Association (LBDA) Research Centers of Excellence (RCOE) Investigator’s meeting was held on December 14, 2017, in New Orleans. The program was established to increase patient access to clinical experts on Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD), and to create a clinical trials-ready network. Four working groups (WG) were created to pursue the LBDA RCOE aims: (1) increase access to high-quality clinical care, (2) increase access to support for people living with LBD and their caregivers, (3) increase knowledge of LBD among medical and allied (or other) professionals, and (4) create infrastructure for a clinical trials-ready network as well as resources to advance the study of new therapeutics.https://deepblue.lib.umich.edu/bitstream/2027.42/148286/1/13195_2019_Article_476.pd

    Lung transplantation for pulmonary fibrosis in dyskeratosis congenita: Case Report and systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyskeratosis congenita (DC) is a progressive, multi-system, inherited disorder of telomere biology with high risks of morbidity and mortality from bone marrow failure, hematologic malignancy, solid tumors and pulmonary fibrosis. Hematopoietic stem cell transplantation (HSCT) can cure the bone marrow failure, but it does not eliminate the risks of other complications, for which life-long surveillance is required. Pulmonary fibrosis is a progressive and lethal complication of DC.</p> <p>Case presentation</p> <p>In this report, we describe a patient with DC who developed pulmonary fibrosis seven years after HSCT for severe aplastic anemia, and was successfully treated with bilateral lung transplantation. We also performed a systematic literature review to understand the burden of pulmonary disease in patients with DC who did or did not receive an HSCT. Including our patient, we identified 49 DC patients with pulmonary disease (12 after HSCT and 37 without HSCT), and 509 with no reported pulmonary complications.</p> <p>Conclusion</p> <p>Our current case and literature review indicate that pulmonary morbidity is one of the major contributors to poor quality of life and reduced long-term survival in DC. We suggest that lung transplantation be considered for patients with DC who develop pulmonary fibrosis with no concurrent evidence of multi-organ failure.</p

    Characteristics of Adults in the Hepatitis B Research Network in North America Reflect Their Country of Origin and Hepatitis B Virus Genotype

    Get PDF
    Chronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma worldwide; populations that migrate to the US and Canada might be disproportionately affected. The Hepatitis B Research Network (HBRN) is a cooperative network of investigators from the United States and Canada, created to facilitate clinical, therapeutic, and translational research in adults and children with hepatitis B. We describe the structure of the network and baseline characteristics of adults with hepatitis B enrolled in the network

    Targeting the glycoproteome

    Full text link

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore