9 research outputs found

    Prevalence of some common bacterial diseases in commercial poultry farm

    Get PDF
    Bacterial disease of poultry is one of the major constraints to the expansion of poultry industry. The study was undertaken to investigate some common bacterial diseases in commercial poultry farm. A total of 100 sick and dead chickens (67 broilers, 26 layers and 7 sonali) were collected from different poultry farms which were subjected to postmortem examination for tentative diagnosis. After the post-mortem examination, out of 100 collected dead chickens, bacterial diseases were confirmed 58 %. Among them 52 % of the chickens were diagnosed tentatively to be the case of colibacillosis, 4 % salmonellosis, and 2 % of fowl cholera. In post-mortem examination, some pathological lesions like: omphalitis, fibrinopurulent fluid accumulation in peritoneal cavity, air sacculitis, pericarditis and perihepatitis, extreme congestion and septicemia in intestine for colibacillosis infection; unabsorbed yolk mass, bronze discoloration and friable liver, hemorrhages in spleen, misshaped ova for salmonellosis as well as swollen and hardening of comb, congestion of skin, multiple pin point pale color necrotic lesion on liver, pin point hemorrhage on fat muscle of heart were observed for fowl cholera infection. Hence, this study will definitely help to perceive the prevalence of common bacterial diseases like colibacillosis, salmonellosis and fowl cholera infection in commercial poultry farm

    Étude des mĂ©canismes de migration du cuivre utilisĂ© comme porteur d’oxygĂšne dans le procĂ©dĂ© de combustion en boucle chimique

    No full text
    Chemical Looping Combustion (CLC) is viewed as a midterm solution to mitigate carbon dioxide emissions with continued utilisation of fossil fuels. In the CLC process, oxygen carrier materials are used to carry out indirect combustion, which allows inherent separation of CO2 with low energy penalty. The oxygen carrier is subjected to successive oxidation-reduction reactions at atmospheric pressure and typically at 800 °C or above. The reaction conditions induce thermal and chemical stress leading to significant degradation of the oxygen carrier’s lifetime. Few studies are available in the literature concerning the relation between reaction parameters such as temperature or number of cycles and the microstructural and chemical evolution of the material, thus highlighting the necessity to conduct in-depth microstructural-phase analysis. This is especially valid for copper-based oxygen carriers which form the core of this thesis.The current study delves in the understanding of the redox behaviour of copper oxide-alumina oxygen carriers in relation to the migration mechanisms of the copper phases within the support material. Herein, to achieve a nanoscale as well as grain-scale (ÎŒm) overview of the material evolution, a multi-technique based approach was employed utilizing scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), scanning transmission X-ray microscopy coupled with X-ray absorption spectroscopy (STXM-XAS), in situ X-ray diffraction (XRD), operando X- ray absorption spectroscopy (XAS) and environmental transmission electron microscopy (eTEM).The ÎŒm-scale microscopic characterisations have aided in the understanding of copper containing phases migration within the alumina support grain, their mobility and interaction, without compromising the spatial distribution of the chemical species. Bulk overview of the material’s chemical species has been gained through XAS characterisation which also provided data on the material’s composition evolution as a function of the redox cycles. Furthermore, the in situ TEM study has highlighted two important aspects: 1st, in terms of material understanding by direct observation of the phases and textural transformations, and 2nd in terms of experimental challenges to characterize such copper-based systems at high temperature.Two mechanisms are proposed concerning the evolution of CuO-Al2O3 system, related to the temperature-dependent diffusion of the copper species, and to the role of copper in the α-Al2O3 phase transition. The comprehension of copper migration and the influence of the support paves a way into finding solutions to inhibit the sintering of the CuO active phase either by lowering the operating temperature or by restricting the transformation to α-Al2O3.La combustion en boucle chimique (CLC) est considĂ©rĂ©e comme une solution Ă  moyen terme pour attĂ©nuer les Ă©missions de dioxyde de carbone avec une utilisation continue des combustibles fossiles. Dans le procĂ©dĂ© CLC, des matĂ©riaux porteurs d'oxygĂšne sont utilisĂ©s pour rĂ©aliser une combustion indirecte, ce qui permet une sĂ©paration inhĂ©rente du CO2 avec une faible pĂ©nalitĂ© Ă©nergĂ©tique. Le transporteur d'oxygĂšne est soumis Ă  des rĂ©actions successives d'oxydorĂ©duction Ă  pression atmosphĂ©rique et typiquement Ă  800°C ou plus. Les conditions de rĂ©action induisent des contraintes thermiques et chimiques conduisant Ă  une dĂ©gradation importante de la durĂ©e de vie du transporteur d'oxygĂšne. Peu d'Ă©tudes sont disponibles dans la littĂ©rature concernant la relation entre les paramĂštres de rĂ©action tels que la tempĂ©rature ou le nombre de cycles et l'Ă©volution microstructurale et chimique du matĂ©riau, soulignant ainsi la nĂ©cessitĂ© de mener une analyse approfondie de la phase microstructurale. Ceci est particuliĂšrement valable pour les transporteurs d'oxygĂšne Ă  base de cuivre qui forment le cƓur de cette thĂšse.L'Ă©tude actuelle se penche sur la comprĂ©hension du comportement redox des transporteurs d'oxygĂšne oxyde de cuivre-alumine en relation avec les mĂ©canismes de migration des phases de cuivre dans le matĂ©riau de support. Ici, pour obtenir une vue d'ensemble Ă  l'Ă©chelle nanomĂ©trique et Ă  l'Ă©chelle du grain (ÎŒm) de l'Ă©volution du matĂ©riau, une approche multitechnique a Ă©tĂ© utilisĂ©e en utilisant la microscopie Ă©lectronique Ă  balayage couplĂ©e Ă  la spectroscopie Ă  dispersion d'Ă©nergie (SEM-EDS), la microscopie Ă  rayons X Ă  transmission Ă  balayage. couplĂ© Ă  la spectroscopie d'absorption des rayons X (STXM-XAS), la diffraction des rayons X in situ (XRD), la spectroscopie d'absorption des rayons X operando (XAS) et la microscopie Ă©lectronique Ă  transmission environnementale (eTEM)Les caractĂ©risations microscopiques Ă  l'Ă©chelle ÎŒm ont aidĂ© Ă  comprendre la migration des phases contenant du cuivre dans le grain de support d'alumine, leur mobilitĂ© et leur interaction, sans compromettre la distribution spatiale des espĂšces chimiques. Un aperçu global des espĂšces chimiques du matĂ©riau a Ă©tĂ© obtenu grĂące Ă  la caractĂ©risation XAS qui a Ă©galement fourni des donnĂ©es sur l'Ă©volution de la composition du matĂ©riau en fonction des cycles redox. De plus, l'Ă©tude MET in situ a mis en Ă©vidence deux aspects importants : 1er en termes de comprĂ©hension des matĂ©riaux par observation directe des phases et des transformations texturales, et 2Ăšme en termes de dĂ©fis expĂ©rimentaux pour caractĂ©riser de tels systĂšmes Ă  base de cuivre Ă  haute tempĂ©rature.Deux mĂ©canismes sont proposĂ©s concernant l'Ă©volution du systĂšme CuO-Al2O3, liĂ©s Ă  la diffusion dĂ©pendante de la tempĂ©rature des espĂšces de cuivre, et au rĂŽle du cuivre dans la transition de phase α-Al2O3. La comprĂ©hension de la migration du cuivre et de l'influence du support ouvre la voie Ă  la recherche de solutions pour inhiber le frittage de la phase active CuO soit en abaissant la tempĂ©rature de fonctionnement soit en limitant la transformation en α-Al2O

    Étude des mĂ©canismes de migration du cuivre utilisĂ© comme porteur d’oxygĂšne dans le procĂ©dĂ© de combustion en boucle chimique

    No full text
    La combustion en boucle chimique (CLC) est considĂ©rĂ©e comme une solution Ă  moyen terme pour attĂ©nuer les Ă©missions de dioxyde de carbone avec une utilisation continue des combustibles fossiles. Dans le procĂ©dĂ© CLC, des matĂ©riaux porteurs d'oxygĂšne sont utilisĂ©s pour rĂ©aliser une combustion indirecte, ce qui permet une sĂ©paration inhĂ©rente du CO2 avec une faible pĂ©nalitĂ© Ă©nergĂ©tique. Le transporteur d'oxygĂšne est soumis Ă  des rĂ©actions successives d'oxydorĂ©duction Ă  pression atmosphĂ©rique et typiquement Ă  800°C ou plus. Les conditions de rĂ©action induisent des contraintes thermiques et chimiques conduisant Ă  une dĂ©gradation importante de la durĂ©e de vie du transporteur d'oxygĂšne. Peu d'Ă©tudes sont disponibles dans la littĂ©rature concernant la relation entre les paramĂštres de rĂ©action tels que la tempĂ©rature ou le nombre de cycles et l'Ă©volution microstructurale et chimique du matĂ©riau, soulignant ainsi la nĂ©cessitĂ© de mener une analyse approfondie de la phase microstructurale. Ceci est particuliĂšrement valable pour les transporteurs d'oxygĂšne Ă  base de cuivre qui forment le cƓur de cette thĂšse.L'Ă©tude actuelle se penche sur la comprĂ©hension du comportement redox des transporteurs d'oxygĂšne oxyde de cuivre-alumine en relation avec les mĂ©canismes de migration des phases de cuivre dans le matĂ©riau de support. Ici, pour obtenir une vue d'ensemble Ă  l'Ă©chelle nanomĂ©trique et Ă  l'Ă©chelle du grain (ÎŒm) de l'Ă©volution du matĂ©riau, une approche multitechnique a Ă©tĂ© utilisĂ©e en utilisant la microscopie Ă©lectronique Ă  balayage couplĂ©e Ă  la spectroscopie Ă  dispersion d'Ă©nergie (SEM-EDS), la microscopie Ă  rayons X Ă  transmission Ă  balayage. couplĂ© Ă  la spectroscopie d'absorption des rayons X (STXM-XAS), la diffraction des rayons X in situ (XRD), la spectroscopie d'absorption des rayons X operando (XAS) et la microscopie Ă©lectronique Ă  transmission environnementale (eTEM)Les caractĂ©risations microscopiques Ă  l'Ă©chelle ÎŒm ont aidĂ© Ă  comprendre la migration des phases contenant du cuivre dans le grain de support d'alumine, leur mobilitĂ© et leur interaction, sans compromettre la distribution spatiale des espĂšces chimiques. Un aperçu global des espĂšces chimiques du matĂ©riau a Ă©tĂ© obtenu grĂące Ă  la caractĂ©risation XAS qui a Ă©galement fourni des donnĂ©es sur l'Ă©volution de la composition du matĂ©riau en fonction des cycles redox. De plus, l'Ă©tude MET in situ a mis en Ă©vidence deux aspects importants : 1er en termes de comprĂ©hension des matĂ©riaux par observation directe des phases et des transformations texturales, et 2Ăšme en termes de dĂ©fis expĂ©rimentaux pour caractĂ©riser de tels systĂšmes Ă  base de cuivre Ă  haute tempĂ©rature.Deux mĂ©canismes sont proposĂ©s concernant l'Ă©volution du systĂšme CuO-Al2O3, liĂ©s Ă  la diffusion dĂ©pendante de la tempĂ©rature des espĂšces de cuivre, et au rĂŽle du cuivre dans la transition de phase α-Al2O3. La comprĂ©hension de la migration du cuivre et de l'influence du support ouvre la voie Ă  la recherche de solutions pour inhiber le frittage de la phase active CuO soit en abaissant la tempĂ©rature de fonctionnement soit en limitant la transformation en α-Al2O3Chemical Looping Combustion (CLC) is viewed as a midterm solution to mitigate carbon dioxide emissions with continued utilisation of fossil fuels. In the CLC process, oxygen carrier materials are used to carry out indirect combustion, which allows inherent separation of CO2 with low energy penalty. The oxygen carrier is subjected to successive oxidation-reduction reactions at atmospheric pressure and typically at 800 °C or above. The reaction conditions induce thermal and chemical stress leading to significant degradation of the oxygen carrier’s lifetime. Few studies are available in the literature concerning the relation between reaction parameters such as temperature or number of cycles and the microstructural and chemical evolution of the material, thus highlighting the necessity to conduct in-depth microstructural-phase analysis. This is especially valid for copper-based oxygen carriers which form the core of this thesis.The current study delves in the understanding of the redox behaviour of copper oxide-alumina oxygen carriers in relation to the migration mechanisms of the copper phases within the support material. Herein, to achieve a nanoscale as well as grain-scale (ÎŒm) overview of the material evolution, a multi-technique based approach was employed utilizing scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), scanning transmission X-ray microscopy coupled with X-ray absorption spectroscopy (STXM-XAS), in situ X-ray diffraction (XRD), operando X- ray absorption spectroscopy (XAS) and environmental transmission electron microscopy (eTEM).The ÎŒm-scale microscopic characterisations have aided in the understanding of copper containing phases migration within the alumina support grain, their mobility and interaction, without compromising the spatial distribution of the chemical species. Bulk overview of the material’s chemical species has been gained through XAS characterisation which also provided data on the material’s composition evolution as a function of the redox cycles. Furthermore, the in situ TEM study has highlighted two important aspects: 1st, in terms of material understanding by direct observation of the phases and textural transformations, and 2nd in terms of experimental challenges to characterize such copper-based systems at high temperature.Two mechanisms are proposed concerning the evolution of CuO-Al2O3 system, related to the temperature-dependent diffusion of the copper species, and to the role of copper in the α-Al2O3 phase transition. The comprehension of copper migration and the influence of the support paves a way into finding solutions to inhibit the sintering of the CuO active phase either by lowering the operating temperature or by restricting the transformation to α-Al2O3

    Étude des mĂ©canismes de migration du cuivre utilisĂ© comme porteur d’oxygĂšne dans le procĂ©dĂ© de combustion en boucle chimique

    No full text
    La combustion en boucle chimique (CLC) est considĂ©rĂ©e comme une solution Ă  moyen terme pour attĂ©nuer les Ă©missions de dioxyde de carbone avec une utilisation continue des combustibles fossiles. Dans le procĂ©dĂ© CLC, des matĂ©riaux porteurs d'oxygĂšne sont utilisĂ©s pour rĂ©aliser une combustion indirecte, ce qui permet une sĂ©paration inhĂ©rente du CO2 avec une faible pĂ©nalitĂ© Ă©nergĂ©tique. Le transporteur d'oxygĂšne est soumis Ă  des rĂ©actions successives d'oxydorĂ©duction Ă  pression atmosphĂ©rique et typiquement Ă  800°C ou plus. Les conditions de rĂ©action induisent des contraintes thermiques et chimiques conduisant Ă  une dĂ©gradation importante de la durĂ©e de vie du transporteur d'oxygĂšne. Peu d'Ă©tudes sont disponibles dans la littĂ©rature concernant la relation entre les paramĂštres de rĂ©action tels que la tempĂ©rature ou le nombre de cycles et l'Ă©volution microstructurale et chimique du matĂ©riau, soulignant ainsi la nĂ©cessitĂ© de mener une analyse approfondie de la phase microstructurale. Ceci est particuliĂšrement valable pour les transporteurs d'oxygĂšne Ă  base de cuivre qui forment le cƓur de cette thĂšse.L'Ă©tude actuelle se penche sur la comprĂ©hension du comportement redox des transporteurs d'oxygĂšne oxyde de cuivre-alumine en relation avec les mĂ©canismes de migration des phases de cuivre dans le matĂ©riau de support. Ici, pour obtenir une vue d'ensemble Ă  l'Ă©chelle nanomĂ©trique et Ă  l'Ă©chelle du grain (ÎŒm) de l'Ă©volution du matĂ©riau, une approche multitechnique a Ă©tĂ© utilisĂ©e en utilisant la microscopie Ă©lectronique Ă  balayage couplĂ©e Ă  la spectroscopie Ă  dispersion d'Ă©nergie (SEM-EDS), la microscopie Ă  rayons X Ă  transmission Ă  balayage. couplĂ© Ă  la spectroscopie d'absorption des rayons X (STXM-XAS), la diffraction des rayons X in situ (XRD), la spectroscopie d'absorption des rayons X operando (XAS) et la microscopie Ă©lectronique Ă  transmission environnementale (eTEM)Les caractĂ©risations microscopiques Ă  l'Ă©chelle ÎŒm ont aidĂ© Ă  comprendre la migration des phases contenant du cuivre dans le grain de support d'alumine, leur mobilitĂ© et leur interaction, sans compromettre la distribution spatiale des espĂšces chimiques. Un aperçu global des espĂšces chimiques du matĂ©riau a Ă©tĂ© obtenu grĂące Ă  la caractĂ©risation XAS qui a Ă©galement fourni des donnĂ©es sur l'Ă©volution de la composition du matĂ©riau en fonction des cycles redox. De plus, l'Ă©tude MET in situ a mis en Ă©vidence deux aspects importants : 1er en termes de comprĂ©hension des matĂ©riaux par observation directe des phases et des transformations texturales, et 2Ăšme en termes de dĂ©fis expĂ©rimentaux pour caractĂ©riser de tels systĂšmes Ă  base de cuivre Ă  haute tempĂ©rature.Deux mĂ©canismes sont proposĂ©s concernant l'Ă©volution du systĂšme CuO-Al2O3, liĂ©s Ă  la diffusion dĂ©pendante de la tempĂ©rature des espĂšces de cuivre, et au rĂŽle du cuivre dans la transition de phase α-Al2O3. La comprĂ©hension de la migration du cuivre et de l'influence du support ouvre la voie Ă  la recherche de solutions pour inhiber le frittage de la phase active CuO soit en abaissant la tempĂ©rature de fonctionnement soit en limitant la transformation en α-Al2O3Chemical Looping Combustion (CLC) is viewed as a midterm solution to mitigate carbon dioxide emissions with continued utilisation of fossil fuels. In the CLC process, oxygen carrier materials are used to carry out indirect combustion, which allows inherent separation of CO2 with low energy penalty. The oxygen carrier is subjected to successive oxidation-reduction reactions at atmospheric pressure and typically at 800 °C or above. The reaction conditions induce thermal and chemical stress leading to significant degradation of the oxygen carrier’s lifetime. Few studies are available in the literature concerning the relation between reaction parameters such as temperature or number of cycles and the microstructural and chemical evolution of the material, thus highlighting the necessity to conduct in-depth microstructural-phase analysis. This is especially valid for copper-based oxygen carriers which form the core of this thesis.The current study delves in the understanding of the redox behaviour of copper oxide-alumina oxygen carriers in relation to the migration mechanisms of the copper phases within the support material. Herein, to achieve a nanoscale as well as grain-scale (ÎŒm) overview of the material evolution, a multi-technique based approach was employed utilizing scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), scanning transmission X-ray microscopy coupled with X-ray absorption spectroscopy (STXM-XAS), in situ X-ray diffraction (XRD), operando X- ray absorption spectroscopy (XAS) and environmental transmission electron microscopy (eTEM).The ÎŒm-scale microscopic characterisations have aided in the understanding of copper containing phases migration within the alumina support grain, their mobility and interaction, without compromising the spatial distribution of the chemical species. Bulk overview of the material’s chemical species has been gained through XAS characterisation which also provided data on the material’s composition evolution as a function of the redox cycles. Furthermore, the in situ TEM study has highlighted two important aspects: 1st, in terms of material understanding by direct observation of the phases and textural transformations, and 2nd in terms of experimental challenges to characterize such copper-based systems at high temperature.Two mechanisms are proposed concerning the evolution of CuO-Al2O3 system, related to the temperature-dependent diffusion of the copper species, and to the role of copper in the α-Al2O3 phase transition. The comprehension of copper migration and the influence of the support paves a way into finding solutions to inhibit the sintering of the CuO active phase either by lowering the operating temperature or by restricting the transformation to α-Al2O3

    In Situ STEM Study on the Morphological Evolution of Copper-Based Nanoparticles During High Temperature Redox Reactions

    No full text
    International audienceDespite the broad relevance of copper nanoparticles in industrial applications, the fundamental understanding of oxidation and reduction of copper at the nanoscale is still a matter of debate and remains within the realm of bulk or thin film-based systems. Moreover, the reported studies on nanoparticles vary widely in terms of experimental parameters and are predominantly carried out using either ex situ observation or environmental transmission electron microscopy in a gaseous atmosphere at low pressure. Hence, dedicated studies in regards to the morphological transformations and structural transitions of copper-based nanoparticles at a wider range of temperatures and under industrially relevant pressure would provide valuable insights to improve the application-specific material design. In this paper, copper nanoparticles are studied using in situ Scanning Transmission Electron Microscopy to discern the transformation of the nanoparticles induced by oxidative and reductive environments at high temperatures. The nanoparticles were subjected to a temperature of 150 °C to 900 °C at 0.5 atm partial pressure of the reactive gas, which resulted in different modes of copper mobility both within the individual nanoparticles and on the surface of the support. Oxidation at an incremental temperature revealed the dependency of the nanoparticles’ morphological evolution on their initial size as well as reaction temperature. After the formation of an initial thin layer of oxide, the nanoparticles evolved to form hollow oxide shells. The kinetics of formation of hollow particles were simulated using a reaction-diffusion model to determine the activation energy of diffusion and temperature-dependent diffusion coefficient of copper in copper oxide. Upon further temperature increase, the hollow shell collapsed to form compact and facetted nanoparticles. Reduction of copper oxide was carried out at different temperatures starting from various oxide phase morphologies. A reduction mechanism is proposed based on the dynamic of the reduction-induced fragmentation of the oxide phase. In a broader perspective, this study offers insights into the mobility of the copper phase during its oxidation–reduction process in terms of microstructural evolution as a function of nanoparticle size, reaction gas, and temperature

    High-Entropy-Alloy Nanocrystal Based Macro- and Mesoporous Materials

    No full text
    High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition–property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of in situ characterization techniques; notably, in situ transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials

    Liquid metals for boosting stability of zeolite catalysts in the conversion of methanol to hydrocarbons

    No full text
    Methanol-to-hydrocarbons (MTH) process has been considered one of the most practical approaches for producing value-added products from methanol. However, the commonly used zeolite catalysts suffer from rapid deactivation due to coke deposition and require regular regeneration treatments. We demonstrate that low-melting-point metals, such as Ga, can effectively promote more stable methanol conversion in the MTH process by slowing coke deposition and facilitating the desorption of carbonaceous species from the zeolite. The ZSM-5 zeolite physically mixed with liquid gallium exhibited an enhanced lifetime in the MTH reaction, which increased by a factor of up to ~14 as compared to the parent ZSM-5. These results suggest an alternative route to the design and preparation of deactivation-resistant zeolite catalysts

    A Soft Chemistry Approach To High Entropy Alloys Based Macro- and Mesoporous Particles

    No full text
    High entropy alloys (HEAs) are composed of five or more homogeneously mixed elements in nearly equimolar ratios. HEAs have rapidly gained importance in the field of catalysis and electrocatalysis, due to their high chemical and thermal stability and to the virtually unlimited types of active sites accessible, stemming from the high configurational entropy.1 In this oral communication, we present a low temperature approach for the synthesis of macro- and mesoporous HEA particles composed of Pd, Pt, Ir, Rh and Ru. This method is inspired by the aerosol templated sol-gel synthesis of porous oxides. By spray-drying a solution containing dissolved metal salts and latex beads, hybrid particles composed of latex beads embedded in an inorganic salts matrix are formed due evaporation induced self-assembly (EISA). Porous, fully reduced HEA-based particles are obtained by annealing the hybrid particles at temperatures as low as 350°C under inert atmosphere. The porous particles exhibit elevated specific surface area, ranging between 100 and 150 g m-3, the highest value reported so far for this kind of materials. High resolution STEM-EDX revealed that the porous structures are composed by small HEAs nanocrystals, while ToF-SIMS showed evidence of metal alloying at the atomic scale. The porous HEA-based particles showed a good catalytic activity towards the CO oxidation reaction, in contrast with non-porous control particles. In situ scanning transmission electron microscopy proved that the porous structure is stable up to 800°C. In conclusion, this work shows a versatile approach for the exploration of self-supported HEA-based porous materials, with important implications in catalysis and electrocatalysis.
    corecore