12 research outputs found

    Subjective Assessment of Image Compression Artefacts on Stereoscopic Display

    Get PDF
    Image and video quality are important to depict any pictorial information vividly and correctly. With the advancement of technology, we can produce high-quality images and can display those in advanced high-resolution displays. But as high-quality images continue to increase in size, transmitting these exceeds the limited bandwidth of display links. To cope, we need to compress the images but desire that the user cannot perceive any difference between the compressed and uncompressed images. In my thesis, psychophysical experiments with a flicker paradigm were undertaken to do a subjective assessment of the visibility of compression artefacts of two sets of images with two codecs viewed on a stereoscopic display. For one set of images the result shows that artefacts can be silenced in some stereo images relative to 2D while testing with the other set of images was inconclusive. This thesis documented evidence for silencing of artefacts in 3D displays. Other differences between stereoscopic and 2D presentation can be predicted but were not observed here (perhaps due to floor effects). Further large-scale subjective assessment with challenging images may help to get a concrete conclusion

    Supply planning for a closed loop system with uncertain demand and return

    Get PDF
    This proposed model considers a supply network consisting of a manufacturer, its external suppliers, and a remanufacturing facility. The manufacturer, facing an uncertain market demand and return, has two options for supplying parts: either ordering the required parts to external suppliers or remanufacturing used products and bringing those back to \u27as new\u27 conditions. We propose a general framework for this multi product, closed loop system and develop a non-linear programming (NLP) model to maximize the total expected profit by optimally deciding quantity of parts to be remanufactured and quantity of parts to be purchased from external suppliers. We solved the mathematical model using two different solution techniques to find optimal or near optimal solution values. With a numerical example we compared the results from both solution techniques and introduced sensitivity analysis to illustrate the interacting effects among critical parameters in the model

    Anti-Inflammatory and Antioxidant Potentials of Merremia hederacea (Burm.Fil) Leaves

    Get PDF
    Background and Aim: This study aimed to identify the existence of phytochemical compounds and evaluate the in-vitro antioxidant and anti-inflammatory potentials of the leaves extract of Merremia hederacea which is commonly known as ivy woodrose. Materials and Methods: The antioxidant potency was measured using DPPH radical scavenging method and reducing power capacity followed by calculating phenol and flavonoid contents. To test the anti-inflammatory effect, the protein-denaturation method was applied. Results: Based on the DPPH scavenging activity, the IC50 value of the extract was determined to be 416.977. The amounts of phenolic content and flavonoids as well as the reducing power of this extract were found satisfactory. The extract remarkably hindered the denaturation of protein in the anti-inflammatory activity test with a maximum of 68.86% inhibition at 500 μg/mL concentration. Conclusion: The results indicate that M. hederacea leaves have favorable antioxidant and anti-inflammatory potencies; hence, this plant can be an effective source of new potent drug

    Impact of gut microbiome on skin health : gut-skin axis observed through the lenses of therapeutics and skin diseases

    Get PDF
    Publisher Copyright: © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.Peer reviewe

    GC-MS phytochemical profiling, pharmacological properties, and in silico studies of Chukrasia velutina leaves: a novel source for bioactive agents

    Get PDF
    Chukrasia velutina is a local medicinal plant commonly known as chikrassy in Bangladesh, India, China, and other South Asian countries. The leaves, bark, and seeds are vastly used as herbal medicine for fever and diarrhea, and its leaves essential oils are used for antimicrobial purposes. In this study, we discuss the neuropsychiatric properties of C. velutina leaves through several animal models, quantitative and qualitative phytochemical analysis, and computational approaches. Neuropsychiatric effects were performed in rodents on the methanolic extract of C. velutina leaves (MECVL). Antidepressant, anxiolytic, and sedative effects experimented through these rodent models were used such as the force swimming test (FST), tail suspension test (TST), hole board test (HBT), elevated plus maze test (EPMT), light/dark box test (LDBT), open field test (OFT), and hole cross test (HCT). In these rodent models, 200 and 400 mg/kg doses were used which exhibited a significant result in the force swimming and tail suspension test (p < 0.001) for the antidepressant effect. In the anxiolytic study, the results were significant in the hole board, elevated plus maze, and light/dark box test (p < 0.001) for doses of 200 and 400 mg/kg. The result was also significant in the open field and hole cross test (p < 0.001) for sedative action in the sake of similar doses. Moreover, qualitative and quantitative studies were also performed through phytochemical screening and GC-MS analysis, and fifty-seven phytochemical compounds were found. These compounds were analyzed for pharmacokinetics properties using the SwissADME tool and from them, thirty-five compounds were considered for the molecular docking analysis. These phytoconstituents were docking against the human serotonin receptor, potassium channel receptor, and crystal structure of human beta-receptor, where eight of the compounds showed a good binding affinity towards the respective receptors considered to the reference standard drugs. After all of these analyses, it can be said that the secondary metabolite of C. velutina leaves (MECVL) could be a good source for inhibiting the neuropsychiatric disorders which were found on animal models as well as in computational studies

    The Immunogenicity of DENV1–4 ED3s Strongly Differ despite Their Almost Identical Three-Dimensional Structures and High Sequence Similarities

    No full text
    The development of a dengue (DENV) vaccine remains challenging due to the heteroserotypic infection, which can result in a potentially deadly hemorrhagic fever or dengue shock syndrome, and only a tetravalent vaccine can overcome this issue. Here, we report the immunogenicity of DENV envelope protein domain 3 (ED3) from all four DENV serotypes (DENV1–4) in Swiss albino and BALB/c mice models. Firstly, we observed that despite having very similar sequences and structures, both the humoral and cellular immunogenicity of ED3s varied significantly, with strength ranging from DENV2 ED3 (2ED3)~3ED3 > 1ED3 > 4ED3, which was assessed through anti-ED3 IgG titers, and DENV1 ED3 (1ED3) > 2ED3~3ED3 > 4ED3 as determined by monitoring T-cell memory (CD44+CD62L+ T cells with IL-4 and IFN-γ expression). Secondly, anti-1ED3 sera cross-reacted with 2ED3 and 3ED3; anti-2ED3 and anti-3ED3 sera cross-reacted with each other, but anti-4ED3 was completely serotype-specific. The lack of reciprocity of anti-1ED3’s cross-reaction was unanticipated. Such disparity in the ED3 responses and cross-reaction might underlie the appearance of hemorrhagic fever and dengue shock syndrome. Hence, the development of an ED3-based tetravalent subunit vaccine would require understanding the aforementioned disparities

    Therapeutic potentials of Adenostemma lavenia (L.) O.Kuntze evidenced into an array of pharmacological effects and ligand-receptor interactions

    No full text
    This study constructed the phytochemical profiles of Adenostemma lavenia (L) methanol extract (MEAL) and investigated its anti-nociceptive, anti-diarrheal, antipyretic, thrombolytic and anthelmintic effects. The GC-MS characterized MEAL had undergone an in vivo antipyretic effect assayed on Swiss albino mice adopting the yeast-induced pyrexia model, antinociceptive activity tested following acetic acid-induced writhing and formalin-induced licking paw models, anti-diarrheal effect in castor oil-induced diarrhea, castor oil-induced enteropooling, and charcoal-induced intestinal transit tests, in vitro thrombolytic effect using clot-lysis model and anthelmintic effects assayed on Tubifex tubifex nematode. The MEAL biometabolites and associated proteins of target diseases were interacted with computational analysis. The MEAL showed a significant dose-dependent percentage of inhibition in acetic acid-induced writhing and formalin-induced paw licking displaying inhibition of 80.40% in acetic acid-induced writhing and 36.23% and 58.21% in the second phase of the formalin-induced model. The MEAL inhibition of 34.37%, 35.29%, and 42.95% in castor oil-induced diarrhea, castor oil-induced enteropooling, and charcoal-induced gastrointestinal motility, respectively. The MEAL significantly reduced yeast-induced pyrexia. Its biometabolites showed remarkable (−4.1 kcal/mol to 7.4 kcal/mol) binding affinity with the protein receptors. Caryophyllene and Cyclobarbital yielded the best binding scores in this research. Results suggest that pure compounds-based pharmacological investigations are necessary to affirm the therapeutic effects

    Ethanol-mediated cold stress tolerance in sorghum seedlings through photosynthetic adaptation, antioxidant defense, and osmoprotectant enhancement

    No full text
    Sorghum (Sorghum bicolor L.), an often overlooked but vital staple crop, suffers severe obstacles in growth and yield due to temperature fluctuations, especially low temperatures. Therefore, scientists nowadays pay impulsive attention to overcoming the deleterious consequences of cold stress (CS) in sorghum. Our current investigations revealed that the application of ethanol (0.2 %) to the root zone of sorghum plants enhanced biomass production, improved gas-exchange features and the levels of photosynthetic pigments, and enhanced leaf relative water content, which collectively contributed to a significant enhancement in the growth performance of sorghum seedlings when subjected to CS conditions (8 °C). Exposure to CS leads to a substantial buildup of reactive oxygen species (ROS), notably hydrogen peroxide, along with elevated levels of malondialdehyde and electrolyte leakage in sorghum leaves, unequivocally indicating the occurrence of oxidative stress in sorghum seedlings. In contrast, the addition of 0.2 % ethanol demonstrated a remarkable ability to alleviate the oxidative burden caused by ROS by substantially enhancing the activities of key antioxidant enzymes, including catalase, peroxidase, glutathione S-transferase and ascorbate peroxidase, and the level of total flavonoids, within the leaves of sorghum seedlings subjected to CS. Furthermore, ethanol treatment exhibited additional benefits by increasing the levels of total soluble sugars and total free amino acids in sorghum seedlings, which are likely to play a pivotal role in maintaining osmotic balance in response to CS. In conclusion, our findings highlight the defensive mechanism modulated by ethanol in promoting the adaptation mechanisms of sorghum seedlings for abatement of cold-induced damage

    Ethanol Treatment Enhances Physiological and Biochemical Responses to Mitigate Saline Toxicity in Soybean

    No full text
    Soil salinity, a major environmental concern, significantly reduces plant growth and production all around the world. Finding solutions to reduce the salinity impacts on plants is critical for global food security. In recent years, the priming of plants with organic chemicals has shown to be a viable approach for the alleviation of salinity effects in plants. The current study examined the effects of exogenous ethanol in triggering salinity acclimatization responses in soybean by investigating growth responses, and numerous physiological and biochemical features. Foliar ethanol application to saline water-treated soybean plants resulted in an enhancement of biomass, leaf area, photosynthetic pigment contents, net photosynthetic rate, shoot relative water content, water use efficiency, and K+ and Mg2+ contents, leading to improved growth performance under salinity. Salt stress significantly enhanced the contents of reactive oxygen species (ROS), malondialdehyde, and electrolyte leakage in the leaves, suggesting salt-induced oxidative stress and membrane damage in soybean plants. In contrast, ethanol treatment of salt-treated soybean plants boosted ROS-detoxification mechanisms by enhancing the activities of antioxidant enzymes, including peroxidase, ascorbate peroxidase, catalase, and glutathione S-transferase. Ethanol application also augmented the levels of proline and total free amino acids in salt-exposed plants, implying a role of ethanol in maintaining osmotic adjustment in response to salt stress. Notably, exogenous ethanol decreased Na+ uptake while increasing K+ and Mg2+ uptake and their partitioning to leaves and roots in salt-stressed plants. Overall, our findings reveal the protective roles of ethanol against salinity in soybean and suggest that the use of this cost-effective and easily accessible ethanol in salinity mitigation could be an effective approach to increase soybean production in salt-affected areas

    Zn Supplementation Mitigates Drought Effects on Cotton by Improving Photosynthetic Performance and Antioxidant Defense Mechanisms

    No full text
    Drought is recognized as a paramount threat to sustainable agricultural productivity. This threat has grown more severe in the age of global climate change. As a result, finding a long-term solution to increase plants’ tolerance to drought stress has been a key research focus. Applications of chemicals such as zinc (Zn) may provide a simpler, less time-consuming, and effective technique for boosting the plant’s resilience to drought. The present study gathers persuasive evidence on the potential roles of zinc sulphate (ZnSO4·7H2O; 1.0 g Kg−1 soil) and zinc oxide (ZnO; 1.0 g Kg−1 soil) in promoting tolerance of cotton plants exposed to drought at the first square stage, by exploring various physiological, morphological, and biochemical features. Soil supplementation of ZnSO4 or ZnO to cotton plants improved their shoot biomass, root dry weight, leaf area, photosynthetic performance, and water-use efficiency under drought stress. Zn application further reduced the drought-induced accumulations of H2O2 and malondialdehyde, and electrolyte leakage in stressed plants. Antioxidant assays revealed that Zn supplements, particularly ZnSO4, reduced reactive oxygen species (ROS) accumulation by increasing the activities of a range of ROS quenchers, such as catalase, ascorbate peroxidase, glutathione S-transferase, and guaiacol peroxidase, to protect the plants against ROS-induced oxidative damage during drought stress. Increased leaf relative water contents along with increased water-soluble protein contents may indicate the role of Zn in improving the plant’s water status under water-deficient conditions. The results of the current study also suggested that, in general, ZnSO4 supplementation more effectively increased cotton drought tolerance than ZnO supplementation, thereby suggesting ZnSO4 as a potential chemical to curtail drought-induced detrimental effects in water-limited soil conditions
    corecore