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Abstract 

Image and video quality are important to depict any pictorial information vividly and 

correctly. With the advancement of technology, we can produce high-quality images and 

can display those in advanced high-resolution displays. But as high-quality images 

continue to increase in size, transmitting these exceeds the limited bandwidth of display 

links. To cope, we need to compress the images but desire that the user cannot perceive 

any difference between the compressed and uncompressed images. In my thesis, 

psychophysical experiments with a flicker paradigm were undertaken to do a subjective 

assessment of the visibility of compression artefacts of two sets of images with two codecs 

viewed on a stereoscopic display. For one set of images the result shows that artefacts 

can be silenced in some stereo images relative to 2D while testing with the other set of 

images was inconclusive. This thesis documented evidence for silencing of artefacts in 

3D displays. Other differences between stereoscopic and 2D presentation can be 

predicted but were not observed here (perhaps due to floor effects). Further large-scale 

subjective assessment with challenging images may help to get a concrete conclusion. 
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Introduction  
 

1.1 Motivation  

Ultra high-resolution displays are becoming available and increasingly popular. 

With the increase of resolution, bandwidth demands for the video data interface 

increase significantly. Historically, the video source has transmitted uncompressed 

pixels to the display through the digital interface. But the bandwidth (BW) of such 

interfaces has not increased at the same rate as the growth in pixel count. So, 

maintaining a high data rate across the interface requires more power, more wires 

and more shielding to prevent electromagnetic interference (Walls and MacInnis 

2016).These requirements increase device weight, hardware cost and complexity 

and are sometimes economically infeasible with current technology (Walls and 

MacInnis 2016).  

Some existing algorithms including H.264 Intra-only, Motion JPEG 2000, 

Dirac/VC-2 can be used to reduce the BW but those are not designed to provide 

visually lossless quality with modest hardware complexity in real time, with the low 

latency expected of a display correction (Walls and MacInnis 2016) . To cope up 

with these problems, the industry has investigated lightweight, very low impairment 

compression techniques to reduce bandwidth requirements without impacting 

image quality. JPEG XS (Descampe et al. 2017), a ‘visually lossless’ codec, 

targets production applications, IP and ethernet application but it may not deal well 
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with specific types of content, e.g., subpixel rendered text (Walls and MacInnis 

2016)  . The Video Electronics Standards Association (VESA) introduced a 

standard for ‘visually lossless’, low cost and interoperable image/video 

compression designed to work in the display link that is now known as Display 

Stream Compression (DSC) (Walls and MacInnis 2016) and subsequently 

published another technique referred to as VESA Display Compression-M (VDC-

M) (Video Association Electronic Standard 2018). In general, all practical image 

compression techniques are lossy, in the mathematical sense of being irreversible 

and thus losing information. However, this information loss may or may not be 

apparent to the viewer. Visually lossless implies that no visible changes are 

introduced in the compressed image compared to the uncompressed one. Visually 

lossless coded images or image sequences would be indistinguishable from the 

original under the same viewing condition and for the same spatial area 

(International Organization of Standards  2015) However, even in algorithms 

aiming to be visually lossless there may be some visible differences between the 

original and compressed images which are undesirable, distracting and may affect 

the subjective quality of image content. Image quality assessment is necessary to 

identify possible issues or artefacts produced by an image compression algorithm. 

DSC is claimed to be visually lossless up to a compression rate of 8 bpp (bit per 

pixel) (Walls and MacInnis 2016; Allison et al. 2017) .Objective measures of image 

difference such as S-CIELAB (Zhang and Wandell 1997) and Peak Signal-to-Noise 
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Ratio can be used for the assessment of a compression algorithm during 

development but the results from objective assessment do not truly anticipate 

human perception. Subjective assessment is essential to evaluate whether any 

algorithm, such as DSC or VDC-M,  is visually lossless or not (Allison et al. 2017) 

as there is no perfect model of human vision to predict the visibility of compression 

artefacts (Hoffman and Stolitzka 2014) and humans vary in their sensitivity. 

Objective and subjective measures for image assessment have been developed 

mostly in the context of 2D images and video. Using a stereoscopic 3D (S3D) 

display an observer can perceive depth or 3D structure from the information given 

by viewing with two eyes (binocular vision). In natural stereoscopic vision the depth 

information is signalled by the differences or disparities between the images in the 

two eyes. In an S3D display, such images are presented separately to the left and 

right eye and thus the user can perceive the depth by combining them in the brain. 

While objective and subjective measures for stereoscopic 3D image assessment 

have been developed (J. Yang et al. 2009; Wang et al. 2009; Campisi, Callet, and 

Marini 2007; Seuntiens, Meesters, and Ijsselsteijn 2006), to my knowledge no 

techniques for assessment of visually lossless stereoscopic images have been 

developed or assessed. In this thesis, I performed subjective assessment of DSC 

and VDC-M using stereo displays for both 2D and stereoscopic images using a 

variation of a standard technique for assessing whether an algorithm achieves 

visually lossless performance or not.  
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1.2 Contributions 

In this thesis, I presented an experimental system based on the ISO 29170-2 flicker 

paradigm (International Organization of Standards 2015)  in which 2D and 

stereoscopic images are displayed in a mirror stereoscopic display. The user’s task 

was to select the compressed image using a gamepad when presented with a pair 

of images, one compressed and the other the uncompressed reference. This 

thesis contributes to the fields of subjective image assessment and image 

compression algorithms by: 

i. Describing an experimental system that can be used to subjectively assess 

“visually lossless” image compression codecs. I also compared subjective 

with objective measures of images by calculating the Peak Signal to Noise 

Ratio (PSNR) (see Appendix).  

ii. Comparing the effect of image compression codecs between 2D and 

stereoscopic images to find out if there is a difference in visibility of 

compression artefacts in 2D vs stereoscopic images. This has practical 

application for codec performance targets and algorithm development for 

3D displays for gaming, movies, animation, 3D rendered images etc. 

Based on theoretical considerations and experimental studies of human binocular 

vision, I can predict that the human perception of image artefacts may differ 

between 2D and stereo images under the same conditions. The objective of my 
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experiments is to assess the visibility of image compression artefacts in equivalent 

2D and stereo images where equivalence is defined as: 

i. Same display method and viewing conditions are used for both 2D and 

stereoscopic images. 

ii. Same reference images are used for 2D and stereoscopic conditions. 

iii. Same codec and same compression rate are used for both 2D and 

stereoscopic images. 

1.3 Thesis Outline 

The thesis consists of five chapters including this introduction. In the second 

chapter I review the literature on image compression, subjective assessment, 

stereoscopic vision and stereoscopic display, and binocular and monocular vision 

that are relevant to the assessment of compression artefacts. 

The third chapter presents the general method and experimental setup. Image 

compression artefacts are assessed and compared in 2D versus stereoscopic 

images under the chosen test conditions. The experimental design and results 

along with statistical and theoretical analysis of these findings are discussed in the 

fourth chapter (1st experiment) and fifth chapter (2nd experiment). I summarize the 

conclusions and outline possible future work in this field in the final chapter. 
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Literature Review                                                     

2.1 Review on Image Compression Artefacts  

For transmission and storage of digital images, image compression has long been 

necessary. Image compression is a type of data compression, the purpose of 

which is reducing the size of an image or video file in a way so that the compressed 

file has an acceptable quality in-spite-of size reduction. For display link 

compression, the goal is to reduce the number of bits to be transmitted over the 

link. In other applications, the goal is saving more images in a given storage so 

that it may take less time to transfer compressed images through different devices 

and over internet, reducing the cost for storage (increase data capacity) and 

transmission-bandwidth (increase data rate).  

In most images, unnecessary duplication of information occurs due to spatial and 

temporal correlation of neighbouring pixels. Due to this correlation images contain 

redundant information. Moreover, images contain information which is not 

perceptible to the human visual system (HVS) and this information can be 

considered as irrelevant. Image compression aims at reducing redundancy and 

irrelevancy (Dhawan 2011). Image compression can be classified as lossy 

compression or lossless compression. Lossless compression produces an image 

which is numerically identical to the original image. In lossy compression the  
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compressed image loses (bitwise lossy) information compared to the 

uncompressed one. This loss may produce visible artefacts. Lossy compression 

may be regarded as visually lossless if the difference (artefacts) between original 

and compressed image is imperceptible by the HVS. Some methods of lossless 

compression include entropy encoding, run length coding, chain codes, deflate and 

predictive coding; while color space reduction, chroma subsampling, transform 

coding and fractal compression are methods for lossy compression. 

Lossy compression is more popular in some applications (e.g. streaming) as it can 

provide greater compression rates than lossless compression. But due to the 

irreversible nature, the concern with the lossy compression is the degradation of 

information which may result in poor quality i.e. visible compression artefacts. 

Lossy compression often includes quantization processes which reduce a range 

of values to a single quantum value. Block based coding used for quantization can 

introduce different types of artefacts including block boundary artefacts, ringing, 

posterizing and staircase noise. In block-based coding, each block is quantized 

independently which results different quantization coefficients between 

neighbouring blocks. Blocks containing an image edge can produce staircase 

noise where block bands appears like edge (Punchihewa and Bailey 2002). 

Ringing artefacts (Figure 2.1) can appear where sharp transition of signals occur. 

It appears as a ghost near the edges on a relatively uniform background due to a 

loss of high frequency components. In video, Mosquito noise arises from ringing in 
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successive frames, it appears as a shimmering blur of dots around the edge. 

Posterization (Figure 2.2) is an artefact which may occur due to color quantization 

when a continuous gradation of color tone cannot be sampled perfectly due to 

inadequate color depth. Posterization appears as discrete band of color in place 

of a continuous gradient of a color tone. 

  

Figure 2.1: Image with (Right) and without (Left) Ringing artefact (Barth (CC0 

1.0) 2010) 

  

Figure 2.2: Image with (Right) and without (Left) Posterization artefact 

(Posterization Artifacts 2018) 
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As image compression is necessary and at the same time perception of artefacts 

is undesirable, so one of the main objectives of a compression codec is to provide 

visually lossless compression which can be evaluated by subjective assessment. 

2.2 DSC and VDC-M   

A range of different techniques have been developed to compress images and 

images sequences and given the range of constraints and application domains 

where compression is used there is no ideal codec and many codecs have been 

developed for niche applications. Historically one place that has always used 

uncompressed image sequences is the display link, the physical connection 

between the video source and the display. These display links, such as the video 

cable connecting your computer monitor, have always been intended to deliver the 

image with no distortion or loss of information. As discussed in the introduction 

there is now need for compression over this link, which needs to be performed with 

low latency, in real time and ideally maintaining the expectation of no degradation 

of the image (visually lossless). This compressed link is accomplished by an  

encoder-decoder pair or a codec. The purpose of the encoder is to take an input 

image stream and produce a compressed bitstream that is sent over the display 

link, while the decoder receives this bitstream as input and produces a 

reconstructed image sequence (Video Electronic Standard Association 2018) 

To address these issues with display stream capacity, VESA developed a visually  
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lossless, low cost and interoperable image/video codec intended to work over the 

display link that is now known as Display Stream Compression (DSC 1.0) (Walls 

and MacInnis 2016). VESA released the current version of DSC, version 1.2, in 

2016. Compared to other existing compression techniques, DSC provides visually 

lossless compression with low compression ratio, high data rate, constant bit rate, 

reduced complexity, low power and low cost (Walls and MacInnis 2016) . I used 

DSC in this study as it provides state of the art performance for display stream 

compression. Other popular techniques such as MPEG-2, H-2.64, JPEG-2000 and 

VC-2 require large storage which makes them too expensive and slow for display 

stream compression (Walls and MacInnis 2014) but they served as reference 

algorithms (Walls and MacInnis 2014) in developing DSC. 

To be practical and generally applicable, objective and subjective assessment of 

a compression algorithm needs to be done for a wide range of photos and video, 

and for different kinds of displays to verify the visually lossless property. Besides 

a wide range of content from the target application domain, engineering ‘challenge’ 

images are often used that target suspected weakness based on the design and 

implementation of the codec or resource (memory, processing, …) limitations. 

Designing such images requires knowledge of the structure and operation of the 

compression technique.  

The architecture of a DSC encoder and decoder is shown as a block diagram in 

Figures 2.3 and 2.4. In DSC, the pixels in each image are divided into an integer 
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number of non-overlapping, rectangular, slices, each of which is comprised of a 

set of groups where each group consists of 3 or 6 consecutive pixels. DSC uses 

delta size unit variable length coding (DSU-VLC) to code each group. The variable 

number of bits to code each group is converted to a constant bit rate by a rate 

buffer. An identical rate control algorithm is used in both the encoder and decoder 

and thus prevents buffer overflow and underflow. Subjective quality is maintained 

by the rate control algorithm as it adjusts the quantization parameter value. DSC 

uses a line buffer to store reconstructed pixel values from previous line. The 

decoder line buffer normally has the required storage to contain the full range 

reconstructed sample but if the decoder uses a smaller bit depth it may affect the 

picture quality. With RGB sources color space conversion is needed, DSC 

converts RGB source to YCoCg-R in the encoder and in the decoder YCoCg-R is 

converted back to RGB assuming spatial coherence of each component of the 

RGB signal. YCoCg-R is an alternative colour space that is better suited to 

compression and is a reversibly scaled version of the RGB space where Y 

represents the luma, Cg for chrominance green and Cr for chrominance orange. 

The colour space conversion is mathematically reversible for uncompressed 

images; however, for images where the RGB components are not coherent, e.g. 

images with chromatic aberration correction for a virtual reality headset, this 

compression of color space converted content may introduce artefacts. 
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Figure 2.3: DSC encoder block diagram (Walls and MacInnis 2016) 

 
 

 
 
 

Figure 2.4: DSC decoder block (Walls and MacInnis 2016)  

VDC-M was developed for mobile/VR/HDR applications to provide visually 

lossless compression of the display stream at higher compression rates than DSC. 

It was introduced to cope with the increase in pixel bandwidth for mobile and VR  
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applications, trading off a higher rate of compression by allowing increased 

computational complexity compared to DSC. Besides reducing the bandwidth 

required on the display link it also reduces the system cost by allowing a smaller 

frame buffer memory in the display driver IC (Figure 2.5). 

 

 

 

 

 

 

 

  

 

 

Figure 2.5: Example system configuration for a 30-bit, 3840 by 2160 pixel 

resolution display using VDC-M compression, adapted from (Jacobson et al. 

2017) 

Fig. 2.6 shows the functional block diagram of a VDC-M encoder. VDC-M is a real 

time, low bit rate compression technique which controls the underflow and overflow 

issues through the rate controller and buffer. When pixel data flow at a constant  
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rate to the encoder, the encoder produces a constant rate for the bitstream 

transmitted across the display link. As the budget and process technology of the 

display processor typically exceeds that of the display driver, the computational 

complexity was designed to be larger in the encoder than decoder. Through the 

bitstream syntax, the encoder sends the comparison results and mode decision to 

the decoder, allowing the decoder to be implemented with less complexity than 

encoder (Video Electronic Standard Association 2018). 

 

Figure 2.6: VDC-M Encoder (Jacobson et al. 2017) 

I used VDC-M as well as DSC as it is also a state-of-the-art codec for display 

stream compression that allows higher compression ratios and involves different 

engineering trade-offs. As DSC or VDC-M are real time compression codecs 

where compression takes place in the display pipeline, they may result temporal 

and spatial image artefacts. Temporal instability or flicker artefact may appear in 
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this kind of real time compression as, with each screen refresh, a different image 

is compressed and decompressed. During subjective evaluation it should be 

remembered that this kind of flicker artefact may arise without any other artefacts 

visible in the individual images (Hoffman and Stolitzka 2014). 

2.3 Subjective assessment of Image Compression 

One major target in the image compression industry is to develop compression 

techniques which provide visually lossless distortion in maximally compressed  

images. Due to compression, artefacts may occur in the compressed image such 

as flickering, aliasing, color quantization (degradation of color quality), color 

banding, block boundary artefacts etc. Objective metrics can help detect some of 

these in the development of a codec but are not suitable to assess barely visible 

image artefacts in complicated images (Hoffman and Stolitzka 2014). For a visually 

lossless compression, the artefacts should not be discernible, and this must be 

determined or at least confirmed with subjective testing. The results of subjective 

image quality assessment, especially at visibility threshold, may be affected by 

various parameters such as measurement scale, industrial versus academic 

assessment setting, psychometric function assumed, and the subject’s task. In 

many applications the measured threshold could be lower than that observed in 

everyday usage.  

Zhang et al (Brunnström et al. 2017) identified three parameters that could affect  
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subjective testing: display, signal and viewing distance/angle. They did 

experiments to determine the effect of type of display on detection threshold at the 

same EOTFs (Electro-Optical Transfer Functions) and same viewing condition. For 

a digital display, the EOTF represents the mapping from the digital code words 

representing the content (“Electro”) to the visible light output on the display 

(“Optical”) (International Telecommunications Union 2018). This function has 

traditionally been described by the so-called gamma curve (International 

Telecommunications Union 2011) and is explicitly specified in newer high-dynamic 

range standards (International Telecommunications Union 2018; Society of Motion 

Picture and Television Engineers 2014). The EOTF affects the contrast and 

visibility of the artifacts and thus must be controlled for a valid comparison between 

displays. The authors measured contrast detection threshold of HEVC (High 

Efficiency Video Coding) distorted 8-bit images for two stimuli by three trained 

observers using a forced choice procedure. They tested observers on three 

different displays: a mobile display, a desktop, and a laboratory display. The 

displays were adjusted to have similar EOTFs and viewing distance was controlled 

to match visual angle. They found that contrast detection thresholds were similar 

for HEVC distorted 8-bit images in different displays when the EOTFs of the 

displays were similar. 

Hoffman et al (Hoffman and Stolitzka 2014) introduced a new subjective method 

for assessing whether a compressed image was visually lossless subsequently 
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adopted as ISO/IEC international standard 29170-2 (International Organization of 

Standards 2015). The procedure was based on two-alternative forced choice 

detection where the uncompressed image and compressed image are both 

presented, and the test subject has to identify which is the compressed image. In 

such a scenario, if the compression is perfectly visually lossless the subject needs 

to guess, which results in correct responses on 50% of the trials on average. If the 

compression artefacts are obvious then they will always be seen (100% correct). 

When the artefacts are neither obvious nor imperceptible they will be detected with 

a probability that depends on their visibility. So, a statistical criterion or a difference 

threshold is needed to define the visually lossless property. This criterion is 

normally referred to as a ‘just noticeable difference’(JND). JND is defined as the 

smallest difference between two stimuli that a user can detect some proportion of 

time. Hoffman et al (Hoffman and Stolitzka 2014) defined a threshold for visually 

lossless as one JND corresponding to a correct detection on 75% of trials under a 

set of reference viewing conditions, halfway between chance and perfect 

detection.  

If the compressed and uncompressed images are displayed statically side by side, 

then it might be difficult to detect the difference. To make the artefacts more visible, 

Hoffman et al used a flicker viewing method in which two image sequences were 

viewed side by side for 4s. One was the reference image presented statically and 

the other was an alternation between reference and test image at a rate of 7.5 Hz. 
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When the compressed image is interleaved with the uncompressed one, 

differences between reference and compressed images flash (scintillate) and for 

this reason viewers can detect even subtle distortion which could be unnoticeable 

in a static side by side comparison (Hoffman and Stolitzka 2014). Additional 

temporal modulation occurs due to flickering that helps the viewer in searching the 

distorted region (Brunnström et al. 2017). Temporal frequency due to flickering can 

move the spatial frequency of the distortion to a more sensitive part of the 

spatiotemporal contrast sensitivity function compared to the static compressed 

image which is another reason why the artefacts become more visible with 

flickering (Brunnström et al. 2017).The visual system is sensitive to temporal 

change with a peak sensitivity in the 5 - 7.5 Hz range (Brunnström et al. 2017). 

Thus, the flicker viewing method makes the artefacts more visible. Instead of 

showing the whole image, a 200X300 pixel crop of each image containing the 

potential problem area was shown to ensure that observers focused on the area 

of interest. One criticism of the flicker paradigm is that it may be overly sensitive 

for testing still images (as still images do not flicker) as the flicker may produce 

visibility of artefacts not seen in still images. i.e., it may measure something which 

is irrelevant to still images (Brunnström et al. 2017). But for the compression 

codecs for display stream compression the expectation is very high that no 

artefacts are introduced during this compression stage, in this case the sensitivity 
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of the flicker paradigm is very conservative helping ensure the visually lossless 

property of this kind of codec (Brunnström et al. 2017). 

Allison et al. (Allison et al. 2017) presented a large scale subjective evaluation of 

DSC 1.2 for 2D images at different levels of compression, different chroma 

subsampling and different slice sizes. They used the ISO/IEC 29170-2 standard 

with two protocols: Flicker and Panning. They used 25 images and tested 120 

observers. In both protocols, a pair of image sequences were shown side by side: 

one of the images was the test image and the other was always uncompressed. 

The only difference between the two protocols was that in the flicker protocol the 

test image sequence consisted of the compressed image alternating with the 

uncompressed image while in the panning protocol the images were moved 

diagonally, and the test sequence was compressed while the other was not. The 

user’s task was to identify which image looked worst or had flicker or artefacts. 

According to the standard if the correct discrimination of the compressed image in 

the pair of image was less than 75% for all observers then that compression was 

considered visually lossless (Hoffman and Stolitzka 2014). DSC 1.2 showed 

visually lossless performance for RGB and YUV subsampled sources at target 

levels of compression (down to 8bpp) but some challenging images were not 

visually lossless (Allison et al. 2017). Data from their psychophysical study shows 

that in most cases, for moving content in the panning protocol viewers were less 

sensitive to compression artefacts compared to the flicker protocol. This sensitivity 
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could be due to motion silencing (failure to detect any change due to motion). A 

subjective test was done in (Choi, Cormack, and Bovik 2015) to find out the effect 

of motion on detecting flicker distortion in naturalistic video which showed that the 

speed of object motion can affect the visibility of flicker distortion. According to 

(Choi, Cormack, and Bovik 2015) for objects with fast motion, subjects perceive 

less flicker distortion in spite of gazing on the moving object and in poor quality 

video motion silencing becomes more apparent.  

Most of this previous empirical and theoretical work on image compression 

assessment has been performed using 2D images and video. Stereoscopic 3D 

image compression introduces additional considerations including the impact of 

artefacts on depth perception and the effects of symmetry of the compression 

artefacts in the two eyes. Chen et al (Chen, Bovik, and Cormack 2011) studied 

human detection of local distortion in stereoscopic 3D images. In the experiment 

they assessed perception of distortion by varying severity and type of distortion for 

low level image content in order to find out the effect of masking on stereo images. 

Four types of distortion were used: White noise, Blur, JPEG compression 

distortion, JPEG 2000 compression distortion. These distortions were inserted two 

ways into images. The first was as binocular distortion where the distortion was 

added in the same position in both images. The second was dichoptic distortion, 

where the distortion was inserted randomly in different positions in both images. 

The user’s task was to detect the position of distortion. They found that for blur and 
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JP2k distortions in stereo-images, human perception was correlated with contrast 

and range variation; and regions with higher contrast or range energy were easily 

visible to user. On the other hand, contrast and range variation did not have 

significant effects for white noise and JPEG compression. These authors and 

others assessed binocular effects of noticeable image distortion and it is not clear 

if these results apply to near visually lossless compression where artefacts appear 

near their detection threshold. In this thesis, I compressed images using DSC or 

VDC-M codecs targeting visually lossless compression and determined whether 

threshold level of binocular or dichoptic artefacts are suppressed or enhanced by 

stereoscopic presentation. In analyzing these data, I seek to identify conditions 

where stereoscopic image compression may be more tolerant or conversely more 

susceptible to compression artefacts than equivalent 2D displays. To do so 

requires a basic understanding of human stereoscopic depth perception and S3D 

display techniques which are reviewed in the next section. 

2.4 Stereoscopic Vision and Stereo Display 

In stereoscopic display both monocular and binocular depth cues typically coexist 

(McIntire, Havig, and Geiselman 2014). The binocular cue of stereopsis arises 

from the fact that our eyes are separated laterally in the head so that each eye 

sees the world from a slightly different vantage point (binocular parallax). The 

differences between the images in the two eyes arise principally from depth  
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variation in the scene and are known as binocular disparities. When presented in 

an S3D display these left and right eye images are generally called a stereo pair. 

In a stereoscopic display, images are presented containing binocular disparity 

between the left and right images which gives the Human Visual System (HVS)  

information for relative depth perception. A S3D display must provide the 

appropriate image to each eye and there are different techniques available to 

separate and present the left and right views including mirrors, wavelength 

(anaglyph), polarization of light, alternating occlusion, and autostereoscopic  

displays. In a mirror stereoscope a pair of mirrors is used which are placed at ±45 

degree angles to the face, one in front of each eye. The left side mirror reflects the 

left image and right side mirror reflects the right image, so each eye views the  

image designed for that eye and thus the user perceives depth by combining the 

two images in the brain. In the anaglyph technique, the left and right images are 

viewed through different color filters mounted in glasses, for example, one red and 

one cyan, and two images are printed overlaid on the same paper (or display) with 

the complementary colors. The anaglyph glasses can filter out the complementary 

color and can transmit the appropriate image to each eye. Polarizing techniques 

uses different polarizing filters to project two images on the screen. For 

stereoscopic vision the user needs to wear glasses with differently oriented 

polarizing filters (one matching each projected polarization) so that only similarly 

polarized light is passed through the filter and thus the two eyes have two different 
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images. Alternating occlusion methods use active shutter glasses synchronized 

with the display system. The glasses block one eye’s view while presenting the 

image for another eye, e.g., when the right image is presented at that time the left 

eye is blocked. On the next video frame this occlusion is then swapped and the 

other eye’s image displayed. This alternation is performed at a high enough rate 

that the user cannot perceive the repetition and can fuse the two images to 

perceive the 3D image. In an autostereoscopic display the user can perceive depth 

without the help of 3D glasses. For example, lenticular lens or parallax barrier 

technology can be used to direct the display of each half image in the stereopair 

while blocking the view of the other image.  

Some basic phenomena that may arise and influence the visibility of compression 

artefacts with binocular viewing and stereoscopic display are listed below: 

1. In stereoscopic images, when the size or position of object varies from one 

eye to other eye, it causes change in stereoscopic depth. Due to the 

compression artefact such differences may be produced leading to spurious 

binocular features.  In stereopsis the compression difference in two eyes 

could appear as depth and the unseen pattern in 2D images can be 

disclosed. These depth effects can be generated due to the compression 

artefacts that make texture elements, appear, disappear, change shape or 

size.  
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2. When there are distortions in the shape, size or position of portions of one 

eye’s image from the other eye, stereoscopic depth distortion can arise. 

This kind of depth distortion appears within an object or scene. Distorted 

depth occurs within the object and as a consequence shape distortion may 

occur. Generally global depth distortions are (Allison and Wilcox 2015) 

tolerable by users but DSC or VDC-M style compression may produce 

distortion and can result in shape artefacts which are generally more local.  

3. When two images of similar pattern are shown to each eye, dichoptic 

masking arises. The detection of the test stimulus in the one eye is 

prevented by the ‘mask’ stimulus in another eye. When the images are 

similar, masking is most pronounced. Dichoptic masking should make the 

stereoscopic viewing more robust to DSC or VDC-M artefacts than 2D. 

4. When a feature is introduced or removed in only one eye image, spurious 

monocular features arise. They are mostly seen at depth edges in an image. 

If the features are consistent with the viewing geometry, the depth change 

can be perceived. Spurious monocular feature can be introduced by DSC 

or VDC-M style compression as they may introduce or remove a feature or 

texture element.  

5. Lustre/highlights on shiny surfaces can cause intensity variation in the two 

eyes. The shiny surface may appear as dull or a matte surface may appear 

as shiny when the intensity of a feature is affected by compression artefacts. 
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These artefacts may be more common in HDR (High Dynamic Range) 

because in HDR images the surface material properties can be represented 

with higher fidelity. 

6. Accommodation-convergence conflict, excessive disparity (and depth) 

range in the images, poor stereoscopic image quality and other factors can 

introduce visual fatigue and discomfort. These factors are beyond the scope 

of the current thesis. 

7. When sufficiently different images are presented to the two eyes that they 

cannot be ‘fused’ into a single image, binocular rivalry occurs. With 

binocular rivalry, at a given time only one image is ‘dominant’ or seen in any 

region of the display while the other eyes image is not seen or suppressed 

(binocular suppression). Any visually lossless or near visually lossless 

coding (or any modest to high quality coding) like DSC or VDC-M should 

not introduce such kind of extreme errors.  

2.5 Binocular Vision vs Monocular Vision  

When the same stimulus is viewed with two eyes rather than one, sensitivity to 

luminance, contrast, flicker, and motion increases. Since the stimulus appears 

‘stronger’ the inputs are said to sum (Howard and Rogers 2012). This kind of 

phenomena is known as binocular summation. It could be affected by various 

factors. This happens when 2D images are viewed with both eyes instead of one  
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eye. This can be tested by displaying identical image in two monitors of a 

stereoscope. In terms of comparing S3D and 2D image compression, summation 

may be relevant in that the effects of noise on detectability of a pattern is larger 

when the noise is uncorrelated in the two eyes rather than correlated (Anderson 

and Movshon 1989). Thus, if independent compression noise arises in the two  

images it might be more apparent viewed stereoscopically. Probability summation 

is another type of binocular summation which has two subtypes: one with 

independent detectors and another with dependent detectors. When two different 

detectors with uncorrelated noise are presented with a weak stimulus rather than  

a single detector then probability of detecting at least one signal is higher. For 

perfectly correlated noise in two eyes, neural summation of two dichoptically 

presented stimuli has no advantage on Signal to Noise Ratio (SNR) as both the 

stimulus and noise signals are added. But in case of uncorrelated noise, neural 

convergence results in reduction in combined noise with better SNR. For 

monocular vision, neural convergence has no effect on probability summation as 

no independent decision process is taking place for monocular vision. According 

to (Campbell and Green 1965), convergence of neural signals from two eyes for 

two equal stimuli with equal and uncorrelated noise results in 
2

√2
 binocular SNR 

which means that binocular sensitivity should be √2 times better than monocular 

sensitivity.  
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Campbell and Green (Campbell and Green 1965) used sinusoidal gratings of 

various spatial frequencies for the measurement of contrast sensitivity. They  

matched luminance and in monocular conditions one eye viewed a diffuse field of 

the same luminance. For the same spatial frequency in two eyes, the ratio of 

monocular to binocular contrast sensitivity was constant over the visible range of  

spatial frequency (Blake and Levinson 1977). To make a monocular grating equally 

visible as a binocular grating, 50% more contrast was needed (Legge 1984). This 

cannot be explained as doubling of luminance (summing the two eyes) as doubling 

the luminance of a monocular grating increased the contrast sensitivity by a ratio 

of only 1.17. 
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General Method 
 

To assess the effect of compression artefacts I ran a psychophysical experiment 

in a stereoscopic display to measure subjects’ performance on detecting artefacts 

in 3D images and 2D images using a flicker protocol. The goal of the experiment 

was to determine (1) if there are significant differences in the visibility of 

compression artefacts in 3D compared to 2D images, (2) if there are significant 

differences in the visibility of compression artefacts when they are the same in the 

two eyes’ images compared to when the compression differs in the two eyes and 

(3) to compare the compression artefacts for two different levels of compression 

for both 3D and 2D images. The compression algorithms used were DSC 1.2 

(Experiment 1) and VDC-M 1.0.7 (Experiment 2) as representative state-of-the-art 

codecs designed to be visually lossless at modest compression levels. 

3.1 Methods 

In these experiments I made subjective assessments of the detectability of 

compression artefacts for stereoscopic images presented on a stereoscopic 

display. For the subjective assessment of image quality, test images were 

displayed to observers whose responses were used to determine the quality of 

codec, i.e. whether the artefacts were visible or not. In my experiment I used a 

version of the ISO/IEC 29170-2 (International Organization of Standards 2015) 



 

 29 

procedure that I modified for stereoscopic displays. I used the “Flicker” protocol 

(Annex B from the ISO/IEC 29170-2 standard). In the 2D flicker method a pair of 

image sequences are displayed side by side where the pair consist of a test and 

reference sequence. The test sequence consists of the compressed image 

temporally interleaved (alternating) with the uncompressed one at a fixed 

frequency rate. I used 5 Hz as flicker rate, recommended in the ISO/IEC 29170-2 

protocol, as this places potential artefacts near the peak of the spatio-temporal 

contrast sensitivity function (Brunnström et al. 2017). In the reference sequence 

the uncompressed image alternates with itself. When the images are interleaved 

the uncompressed-uncompressed sequence appears as static and the 

compressed-uncompressed sequence may show some artefacts due to the flicker 

sensitivity of Human Visual System. In the stereoscopic version of this task each 

image is an image pair consisting of a left and right half-image that combine to 

form a stereoscopic image when combined by the brain when viewed in the 

stereoscopic display. The compressed stereoscopic image consists of 

compressed half images (left or right or both) and the compression may be the 

same or differ in the two eyes leading to a variety of possible combinations of 

compressed stereoscopic images. In all cases though a compressed stereoscopic 

image alternating with the uncompressed stereoscopic image is the test sequence 

to be discriminated from a static uncompressed stereoscopic reference (Figure 

3.1).   
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Figure 3.1: Display Protocol (O=Original image, L=Left test image, R=Right test 

image, LE=Left Eye display, RE=Right Eye display, O/O=Original image 

alternating with Original image, O/L=Original image alternating with left image.) 

The bottom shows the display as fused in the stereoscope. 
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Figure 3.2: Set up of experiment showing a subject detecting the flickered image 

by using a gamepad. The head is placed in front of the mirrors using a chin rest 

at a viewing distance of 45cm from each eye to its corresponding monitor. 

In the experiment each subject had to perform a two-alternative-forced-choice-task 

on each trial. The task of the user was to detect the compressed image, that is, the 

flickered image. According to ISO/IEC 29170-2 protocol, for a particular image if a 

viewer could correctly detect the compressed image on more than 75% of trials 

then the algorithm was considered lossy for that image and viewer, which means 

that the artefacts were perceptible by the viewer. To monitor whether subjects 

could perform the task and were attending to the experiment catch trials were 

introduced using easily detectable control images. These control images were 
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highly distorted using the JPEG 2000 codec with compression quality 10. 

Observers data were included in the final analysis if they detected the control 

images on at least 95% of the trials. I ran two different experiments for two different 

set of images and two different codec (DSC 1.2 and VDC-M 1.0.7). Each 

experiment used a different set of 12 reference images, which were 2D images for 

Experiment 1 and 3D images for Experiment 2. For both experiments the task of 

user was to determine the flickered image from a pair of images of the same 

content displayed through the stereoscopic display.  

3.1.1 Apparatus and System software  

A stereoscopic display was used to represent the stimuli. The stereoscopic display 

consisted of two HP Dreamcolor Z24x monitors arranged in a mirror stereoscope 

configuration, mirrors were placed at a 90 degree angle to each other, ±45 degrees 

angle to the user’s face. The screen size was 51.5 cm X 32.5 cm, pixel resolution 

was 1920 X 1200 and the frame rate was 60Hz. The monitors were carefully 

matched for color and luminance (maximum 119 Cd/m2 and minimum 0.14 Cd/m2). 

The viewing distance was 45 cm (30 pixels per degree) from the chin rest placed 

in the middle of the two monitors. Participants held the gamepad (Microsoft 

SideWinder Plug & Play Game Pad) with two hands and provided their response 

by clicking one of the two shoulder buttons. The left shoulder button was used to 

select the left image and right shoulder button to select the right image. 
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The Psychotoolbox package (http:psychtoolbox.org/) running in MATLAB R2016a 

(https://www.mathworks.com/) was used to develop the script for the experiment 

code, to display the stimuli and to record users’ responses. For statistical analysis, 

R version 3.4.2 (R core Team) was used.  

3.1.2 Participant Screening 

To be qualified for participating in this experiment each user had to pass three 

types of vision test: one for color vision, one for stereo vision (observers must have 

the ability to discriminate disparity of 40 seconds of arc or better) and one for visual 

acuity  (observers must have better than 20/20 corrected acuity). Participants also 

had to between the age of 18 to 40 years as per the standard.  

Figure 3.3: Test Station  

https://www.mathworks.com/
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To measure visual acuity a Snellen chart was used. In a Snellen chart the measure 

of normal vision is referred to as 20/20; which implies that the observers can 

identifying optotypes nominally sized for a 20’ viewing distance at an actual 

distance of 20’. A participant with ‘normal’ visual acuity can identify an optotype 

which subtends 5 minutes of arc and has 1 minute of arc features and these are 

presented on the 20/20 line. The passing score to be included in the experiment 

was 20/20 with habitual visual correction.  

To measure participant’s depth perception ability, stereoscopic acuity 

(stereoacuity) was measured. The smallest detectable depth difference perceived 

by binocular vision determines the stereoacuity. For my experiment, the Randot 

stereo test (2015 Stereo Optical Company, Inc.) was used, which is a vectograph 

test. It can measure stereoacuity from 400 arc second down to 20 arc second. The 

passing score for the participants to be included in the experiment was 40 arc 

second. During this test the participant had to wear polarizing glasses, could not 

tilt their head to the side and the distance of test plate from eye was 16 inches. 

Adequate light was provided for the test but reflection was avoided from the 

surface of the test booklet. 

To check for color deficiency the Ishihara test (Kanehara Trading Inc., 24 plate 

edition, 2005) was used which contained a series of pictures composed of colored 

spots to diagnose red-green color deficiency. During the test, the test plates were 

placed at 75 cm from eye so that the test plate was at right angle to the line of 
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vision. Six plates were used to test the participants and they needed to provide 

correct answers for all 6 plates with no more than 3 s delay to be qualified for the 

experiment. 
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Experiment 1: 2D vs 3D using 2D images 
 

In Experiment 1, we used 2D images and assessed the effects of (1) disparity of 

the images relative to the screen and (2) the matching or symmetry of the 

compression errors in the left and right images. This allowed us to use images that 

were previously used for extensive 2D testing of the DSC protocol and this 

previous dataset served as a baseline for comparison for our testing in an S3D 

display. More importantly, the use of 2D images with disparity allowed for 

assessment of the effects of displaying the images with a constant disparity with 

respect to the screen (a disparity pedestal) without the complications of variation 

in disparity within the image as would be present in true stereoscopic images. This 

allowed for assessment of the effects of disparity pedestal and to investigate 

whether there were images for which the performance of DSC 1.2 was different 

between disparity and no disparity conditions. The use of 2D images also allowed 

for assessment of the effects of compression artefacts when they were identical in 

the two eyes’ images compared to when they differed, by using identical 2D 

images in the left and right eyes the image compression in the two half images 

could be matched perfectly. Alternatively, by offsetting the images before 

compression, different compression errors could be introduced in the left and right 

images. This experiment used 2D images presented as stereoscopic pairs to 
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address these research questions. Experiment 2 extended these measurements 

to consider true stereoscopic 3D content. 

4.1 Methods 

4.1.1 Subjects and Conditions 

Sixteen participants were recruited for Experiment 1, but after visual screening four 

participants were excluded (two for poor stereoscopic vision and two for poor visual 

acuity) and one participant was excluded for failing to detect flicker in control 

images. So, finally eleven subjects were tested and their data included for analysis. 

Among these, 8 participants were female, and 3 participants were male (ages of 

participants: 18 to 29). All the participants were from the York University 

community. Two of them were York University Graduate Students, one participant 

was an Undergraduate Research Assistant and the remaining 8 participants were 

signed up through the York University Undergraduate Research Participant Pool 

(URPP). For participating in the experiment 1 credit/hour was given to each of 

URPP participant and other users were paid at $20/hour. 

The codec used in this experiment was DSC 1.2. Image pairs consisted of identical 

left and right half images that were presented (1) at the same location in both left 

and right displays so that they had zero disparity and appeared at the plane of the 

screen or (2) where shifted in opposite direction on the left and right displays to 

produce a disparity relative to the screen and appeared to lie behind the screen. 



 

 38 

There was no disparity variation within the images themselves only an overall shift 

thus the images appeared as a 2D image lying either in the screen plane or offset 

from it (see Experiment 2 for true stereoscopic test images). The use of identical 

left and right half images allows for introducing identical image compression in the 

left and right eye views, which would not be possible in true stereoscopic image 

pairs (as the source images themselves differ). The compression introduced in left 

and right half image could either be the same or different. Thus, there were four 

conditions used for this experiment. These are as follows:  

1. Disparity with same compression in the left eye and right eye image.  

2. Disparity with different compression in the left eye and right eye image.  

3(a). No disparity with same compression in the left eye and right eye image using 

only the left half image from condition 2 for both eyes. 

3(b). No disparity with same compression in the left eye and right eye image using 

only the right half image from condition 2 for both eyes. 

4. No disparity with different compression in the left eye and right eye images.  

All conditions were dichoptic and the second condition corresponded to the typical 

compressed stereoscopic display case. In my experiment, I used a selected (i.e., 

cropped) portion of image instead of a full image. The disparity used for conditions 

1 and 2 was 10 pixels. Therefore, to prepare 3D images I did 10-pixel horizontal 

shifting on the 2D images after and before image compression for same  
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compression and different compression, respectively. The image shift prior to 

compression caused the images to differ and produced small stochastic variations 

in the compressed images even at the same compression levels. 

 

Original image → compressed            Original image shifted → compressed 

Crop region defined                 1.Crop is not shifted                     2.Crop is shifted  

                                                      (have disparity)                            (no disparity) 

Figure 4.1: Dichoptic Combinations 

For condition 1, shifting was done after compression to ensure the compression 

was the same in both eyes’ images. The full-size compressed image was cropped 

for the left eye image. Then, to introduce disparity into the stereo pair, the full 

compressed image was shifted but the crop position was not shifted to produce 

the right eye image. Thus, I obtained the compressed left eye and right eye images 

for condition 1.  To produce the reference (i.e. uncompressed) image pair for 

condition 1, the original image was cropped to produce the left eye image and then 

to produce the right eye image, the original image was shifted and cropped in the 

same position as for the left eye image.  



 

 40 

In case of condition 2, the original image was compressed and cropped to produce 

left eye image; for the right eye image, the original image was shifted before 

compression, the image was compressed and after compression the image 

cropped in the same position as used for left eye image.  Thus, the displayed image 

pair has disparity and different compression in the two eyes. To prepare the 

reference image pair of condition 2, the original image was cropped to produce the 

left eye image and the right eye image was prepared by shifting original image and 

then cropping in the same position as for left eye image.  

                       LE                                                                               RE 

 

        O/O O/CL O/O  O/CL 

 

 

 

        O/O  O/CR O/O                    O/CR 

 

 

 

 

Condition 3 was displayed as in Figure 4.2, either the left (compressed and 

cropped) or right image (compressed and cropped) was displayed to both eyes so 

Figure 4.2: Binocular Combination (O=Original; CL, CR=Compressed, cropped Left 

and Right image; LE= Left Eye monitor; RE=Right Eye monitor). Top shows 

Condition 3a while bottom shows Condition 3b 
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the displayed image had no disparity and the same compression to both eyes. For 

this condition the compressed left image was obtained by cropping the original 

image after compression and the reference left image was obtained by cropping 

the original image before compression. To get the reference right image, the 

original image was cropped after shifting 10 pixels horizontally.  To get the 

compressed right image, the original image was shifted 10 pixels, then 

compressed and cropped. Both the compressed left and compressed right images 

were used in case there was a difference in artefact visibility in the two cases due 

to the image shifting.  

In the fourth condition, the original image was compressed and cropped to give the 

left eye test image; then for the right eye test image the original was shifted and 

then compressed so images have different compression but the crop was shifted 

by the same amount as the image shift, so it created zero disparity. The left eye 

and right eye images for the reference pair were the same image, which was 

produced by cropping the original image before compression at the same location.  

4.1.2 Stimuli and Experiment Procedure 

For experiment 1, I used a set of twelve 2D images from the VESA test data set 

that were particularly difficult to compress in previous VESA testing and hence 

nicknamed the ‘killerImage’ set. In the selection of a set of images, it is necessary 

to find out the artefact location and the likelihood for a given image to be lossy or  
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lossless after applying the codec. Computer analysis can be used to narrow down 

the search for the artefact location. In the process of selecting the images, VESA 

used a computer-aided analysis which helped to reduce the image candidates for 

the flicker paradigm experiment (Stolitzka 2017). This process started with an initial 

set of 10,000 still images and image frame sequences contributed to VESA. These 

10,000 images were compressed and filtered for potential artefacts using some 

common techniques including PSNR, SSIM, SCIELAB image mapping and an 

image’s history. From these filtered images (2nd set) a 3rd set of images were 

selected for the flicker paradigm test; Barbara, Zelda, Peppers and some other 

images from the Kodak 24-image test set were included in this set. Assessment of 

human experts was used during the selection of the 2nd set of images so that the 

set contained various types of image scenes including still life, web capture 

images, human portraits, screen backgrounds, landscapes and animals.  The 

images which had high PSNR value (>60db) were considered as lossless (too easy 

for the codec) and excluded during selection process but some unique images 

were included in the 2nd set in spite of high PSNR if there were expectations of 

local image issues or they were representative of a class of images. In this process 

mostly lossless and unexciting images for users were excluded. Following the 

above process 200 images were selected using computer-aided analysis from the 

1st set of 10,000 images. Then 50 images were selected from 200 images through 

image mapping and scene selection. Image mapping categorizes images and 
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scene selection makes sure that representative images are included. In the image 

mapping process, the authors labelled the images into a variety of categories (still 

life, web capture images, human portraits, …) and selected from these to include 

representative images from a variety of categories. From these 50 images, a set 

of 12 images (Hoffman and Stolitzka 2014), difficult for the codec to compress, 

were used in the experiment as shown in Figure 4.3. The flicker paradigm was 

applied on these full-sized images and the locations of artefacts were identified by 

human experts. The original 1920 x 1200 pixels images were cropped to 200 x 300 

pixels to isolate these regions containing the artefacts. Original images were 24-

bit full colour standard dynamic range RGB images (8 bits per pixel per colour 

channel (bpc), 24 bits per pixel (bpp)) that were compressed 3:1 by DSC 1.2 to 

produce 8 bpp images. For display, these images were decompressed to produce 

24-bit RGB images containing any artefacts produced by the compression step.  
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Figure 4.3: Twelve images for experiment 1 
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As described above, four main conditions were tested with the third condition                                                                                                                               

divided into two sub-conditions: one that showed compression based on the left 

images and the other based on the right images. For each condition the same set 

of 12 images was used and 6 catch trial images were also added to each session. 

Performance on these catch trials indicates understanding and attention to the 

task. Each of 12 the images in each condition was presented for 20 times resulting 

in 240 trials per condition (1200 trials for 5 conditions) and each catch trial image 

was presented 20 times in each session resulting in 120 catch trials per session 

(total 240 catch trials in 2 sessions). The total number of trials per observer was 

1440 including the catch trials and viewing time for each trial was 4 seconds. 

Participants indicated whether they saw flicker in the left or right in a pair of 

stereoscopic images by pressing one of two shoulder buttons on the gamepad. 

They could provide their response during the 4 s trial and a feedback sound was 

provided when they failed to select the target image. If they did not respond during 

the trial a blank screen appeared with a text message asking the subjects to 

provide their response.  

The whole experiment was performed by each participant in two sessions over two 

separate days, 60 minutes in each day. Prior to the experiment, each participant 

provided written informed consent to participate in the experiment and was 

screened for visual acuity, stereo acuity and color acuity. This process took about  
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10-12 minutes. Following screening, the first day’s session was run. To limit user 

fatigue, each session was divided into blocks so that each block time could be 

competed 5-6 minutes. The session was divided into blocks of trials for three of 

the conditions, every condition-image combination was tested twice in a random 

sequence to the user in each of the 8 blocks tested on the 1st day. On the second 

day the 3 conditions tested during the first day were again tested through another 

2 blocks (to complete the 20 trials per image-condition) and then the images for 

other two conditions were tested in random sequence through 10 blocks with 2 

trials per image per condition in each block. 

4.2 Results  

In this experiment, the primary hypothesis to be tested was that the sensitivity to 

compression artefacts differed between conditions with disparity and conditions 

without where the stimulus appeared at the screen plane (Hypothesis 1.1). The 

second main hypothesis was that sensitivity to compression artefacts would differ 

when the compression was symmetric (same) versus asymmetric (different) in the 

two eyes (Hypothesis 1.2). To assess these hypotheses, we need to compare 

relative performance between the different conditions when images are 

compressed using DSC 1.2. 
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4.2.1 Descriptive Results 

The average proportion correct score for each condition with DSC1.2 compression 

is shown in Fig 4.4,4.5 and 4.6. This figure shows the data from subjects who were 

able to detect the control images with a proportion correct greater than or equal to 

0.95. For each condition, the mean proportion correct score for the subjects is 

plotted with ± 1 standard deviation (SD). The square symbol represents the mean, 

the error bar represents the standard deviation and triangles denote the range of 

scores. The best performing observer (for whom the proportion correct score is 

highest, i.e., who can detect the flicker most often for a given condition) is indicated 

by downwards triangle and worst performing observer (for whom the proportion 

correct score is lowest) is indicated by upwards triangle. According to ISO/IEC 

29170-2, if any subject can detect the flicker in image for more than 75% time then 

it can be said that DSC1.2 is lossy in that condition. But this definition is based on 

the best performing observer which makes the classification sensitive to outliers. 

Thus an alternative criterion that is less sensitive to outliers was adopted: the 

compression was considered visually lossless if the mean detection rate plus 1 

standard deviation was less than the 0.75 criterion (Allison et al. 2017). The main 

objective of this study was not to verify visually lossless performance but to 

measure relative performance between conditions. We cannot do this comparison 

directly in Fig 4.4, 4.5 and 4.6 because of the asymmetric nature of underlying 
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binomial distribution and because the repeated measures nature of the data is not 

considered.  

 

Figure 4.4: Sample proportion correct under different conditions with DSC1.2 

Compression (part 1) (D = disparity, ND = no disparity, DC = different 

compression, SC = same compression). Error bars represents ±1 SD. 
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Figure 4.5: Sample proportion correct under different conditions with DSC1.2 

Compression (part 2). Error bars represents ±1 SD. 
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Figure 4.6: Sample proportion correct under different conditions with DSC1.2 

Compression (part 3). Error bars represents ±1 SD. 
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4.2.2 GLMM analysis 

To test the two hypothesises, the flicker paradigm data was fitted using a 

Generalized Linear Mixed Model (GLMM) (Agresti 2007). GLMM is an extension 

of GLM (Generalized Linear Model) and GLM is a generalization of SP Model (LM). 

Generalized linear models allow for response variables that have distributions 

other than normal through specifying appropriate link functions between the linear 

predictor and the response variable. In this case the responses were binary 

choices and the binomial distribution, and a logit link function were used.  Its linear 

predictor includes both fixed and random effect. LM allows for only normal 

distribution but GLM allows both normal and non-normal distribution and assumes 

that data are independent. GLMM allows for non-independent in addition to other 

features of GLM. Sometimes data are not independent e.g., when each participant 

provides more than one data point due to repeated measurement under different 

conditions. As the collected data of my experiment has non-normal distribution and 

non-independent nature due to repeated measurement, so I used GLMM for the 

data analysis.  

GLMM analysis was done in the R statistical software environment (R Core Team 

2017) and maximum likelihood estimation was used for fitting data using lme4’s 

‘glmer’. Before fitting GLMM, control data was excluded because including control 

data can cause convergence failure as the response proportions were all 1.0 for 

control data.  
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My main hypotheses were that there would be significant effects of both depth and 

compression. Depth has two levels: disparity (3D or stereo, Conditions 1, and 2) 

and without disparity (2D, Conditions 3a,b and 4); whereas compression also has 

two levels: same compression (Conditions 2 and 4) and different compression 

(Conditions 1, 3(a), and 3(b)). To assess the effects of depth, compression and 

their possible interaction on artefact visibility I used the following formula for the 

model: 

correct ~ depth * compression + (1 | subject) + (1 | ref)            (1) 

The model is expressed in the so-called Wilkinson notation (Wilkinson and Rogers 

1973) for describing statistical models (this notation is also used for model 

specification in a variety of software packages including Matlab, S-plus, and R). In 

the above formula the measured response variable is on the left-hand side of the 

‘~’ operator and the right hand side describes the model in terms of the predictor 

variables or factors. Terms are added to the linear model with the ‘+’ operator and 

‘*’ represents both main effects and interaction of the factors, that is 

depth*compression is equivalent to depth + compression + depth : compression 

where the ‘:’ operator specifies the interaction between the two factors. For the 

above formula, the model treats depth and compression as fixed effects. I modeled 

both subject ID and image as random factors which is indicated by the grouping 

notation (1|subject) which indicates that a random intercept model is used for the 

within subject variable. The error distribution of the response variable was modeled 
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as binomial. The summary of GLMM fit (using ‘glmer’ in R) for the above formula 

is in Table 1. 

Table 1: Effect of interaction between depth and compression for 1st set of 
images (Variables: 2 depth conditions (stereo, 2D), 2 compression conditions 

(same, different), 11 subjects, 12 reference images) 
 

 Estimate Std. Error z value Pr(>|z|)     

(Intercept)                   1.193     0.29     4.09 4.40e-05 *** 

depthstereo -0.227    0.06   -4.08 4.43e-05 *** 

compressionsame 0.030    0.06     0.53   0.594     

depthstereo:compressionsame   0.219    0.09     2.53    0.011 *   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

From the above result we can see that, across all subjects and images, the 

interaction of depth and compression had a significant effect on the perception of 

compression artefacts. On average artefacts are less visible, when compression 

is the different in the two eyes than for the same compression (Figure 4.7) but this 

is particularly true for images with disparity which explains the interaction (Figure 

4.8)  
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Figure 4.7: Different compression vs same compression for 2D and Stereo 

conditions averaged across observers and images. Error-bar represents ±1 

Standard Error (SE) 

s  
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When treating the image as a random factor the interaction between compression 

and depth had a significant effect on artefact perception. Given that we need to 

understand this interaction before addressing our main hypotheses, I was 

interested to explore that interaction effect for each particular image. To see that I 

analysed the following model: 

correct ~ ref * depth * compression + (1 | subject)          (2) 

 

Figure 4.8: 2D vs stereo for same and different compression conditions 

averaged across observers and images. Error bars represents ±1 SE. 
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where again the ‘*’ operator implies the main effects as well as interaction effects. 

This formula takes image as a fixed effect instead of a random effect like Formula 

(1) with fixed effects of depth and compression and subject ID again acts as 

random effect to model repeated measures. The output of GLMM analysis using 

this model showed that for two specific images among the 12 images, Mandrill and 

Peacock, the depth-compression interaction had a significant effect on artefact 

perception. The Mandrill and Peacock images both have very fine texture which 

could be a reason behind this significant effect for depth-compression interaction. 

Table 2: Effect of interaction between depth and compression for Mandrill and 
Peacock (Variables: 2 depth conditions (stereo, 2D), 2 compression conditions 

(same, different), 11 subjects, 2 reference images) 

 Estimate Std. Error z value Pr(>|z|)     

refMandrill.ppm:depthstereo:

compressionsame            

1.33     0.40   3.41 0.0007  *** 

refPeacock.ppm:depthstereo:

compressionsame             

1.12    0.37    3.01 0.0026  ** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

From the proportion correct data shown in Figure 4.9, I can say that for both 

images, artefacts were more visible with same compression than different 

compression when the images had disparity but in the zero-disparity condition 

(Figure 4.9) artefacts were more visible with different compression than same 

compression (opposite to the disparity case). 
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Figure 4.9: Same compression vs different compression for 2D and stereo in 

Mandrill and Peacock. Error bars represents ±1 SE. 

From figure 4.5 we can see that the left (condition 3a) and right (condition 3b) same 

compression condition produced markedly different detection performance for 

Mandrill and Peacock, but not for other images. For both images, artefacts were 

more detectable in condition 3a (same compression left image) than condition 3b. 

The  2D same compression data shown in Figure 4.9 combines both condition 3a 

and b but the most appropriate comparison is with the left (3a) because that was 

used for the stereo same compression (condition 1). Figure 4.10 plots condition 3a 

(same_L) and condition 3b (same_R) separately. Note that when this data is used 

the same compression detections rate is larger or similar to the different 

compression case for both 2D and 3D conditions, consistent with the rest of the 

dataset. 
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Figure 4.10: Comparison between left and right image for mandrill and peacock 

in 2D condition. Error bars represents ±1 SE. 

Hypothesis 1.1 Effect of Disparity: 

The above analysis shows that there is an interaction effect between depth and 

compression on artefact perception; however, this interaction seems to be mainly 

due to two images. Thus, while we need to be mindful of this interaction during the  

hypothesis testing we can consider our main hypotheses. To test hypothesis 1.1, 

I performed a series of planned comparisons between the proportion correct for 

the 2D and stereo conditions for each image (marginal means across compression 

level). This analysis was based on tests of linear contrasts estimating the 

difference between 2D and stereo predictions for each image using the lsmeans 

package in R to obtain the least square mean predictions. Least square means are 

means for groups that are adjusted for means of other factors in the model and are 
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less sensitive to missing data, they are better estimate of true population mean 

(SAS Work Shop 2018). 

Table 3: Comparison between 2D versus Stereo for each image with DSC 1.2 

compression. 

 Experiment1_hypothesis 1.1_2DvsStereo_two tail 

contrast ref estimate SE p.value Sig. 

2d - stereo Barbara 0.019 0.03 0.553  FALSE  

2d - stereo CircularPattern26 0.064  0.03 0.042  TRUE  

2d - stereo Clipboard -0.072 0.03 0.022  TRUE  

2d - stereo FemaleHorseFly 0.033 0.02 0.077  FALSE  

2d - stereo HintergroundMusik -0.035  0.03  0.270  FALSE  

2d - stereo Landscape102 0.059 0.02 0.008  TRUE  

2d - stereo Mandrill 0.069  0.03 0.013  TRUE  

2d - stereo MosaicBroadcom 0.024 0.03 0.373  FALSE  

2d - stereo MysticMountain -0.008 0.03 0.783  FALSE  

2d - stereo Noise -0.007 0.01 0.517  FALSE  

2d - stereo Peacock 0.044 0.03 0.149  FALSE  

2d - stereo Tools 0.066  0.02 0.003  TRUE  

The two-sided pairwise comparisons corresponding to hypothesis 1.1 are shown 

in Table 3 for each image. False Detection Rate (FDR) p-value correction was 

applied for the tests of these hypotheses at a significance level of 0.05. FDR 

adjustment determines adjusted p values for each test, it controls the expected 

proportion of false positive results in those tests (Benjamini and Hochberg 1995). 

Thus, it controls the false rejection of null hypothesis i.e., type I errors.  
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When the adjusted p value is less than the significance level (p<0.05), we can say 

that there is significant difference between the visibility of the artefacts (and hence 

the performance of the codec) for 2D and 3D images. In table 3, the rows with 

p<0.05 are bolded.  

Table 3 shows that there was significant difference in relative performance of DSC 

1.2 for CircularPattern26, Clipboard, Landscape102, Mandrill, Tools. Recall that 

Mandrill also demonstrated a significant interaction between depth and 

compression so the difference in table 3 needs to be interpreted with some caution 

(see Discussion). So, for these 5 images the performance of DSC 1.2 in 2D and 

the performance of DSC 1.2 in stereo was significantly different. For these 5 

images, I cannot accept the null hypothesis H0 (stereo-2D=0) and for remaining 7 

images I failed to reject the null hypothesis as for those 7 images there was no 

significant difference for the performance of DSC 1.2 between 2D and stereo.  
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Figure 4.11: Average proportion correct for 2D versus stereo condition when 

DSC 1.2 compression was used (data for same & different compression are 

collapsed). Error bars represents ±1 SE. 
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We can visualize the difference between the performance of DSC 1.2 for 2D and 

stereo in the plot of Figure 4.11 which shows the average proportion correct for 

each image in the 2D and stereo conditions.  

From the figure and difference estimates in Table 3 we can determine—for images 

where there is significant difference between 2D and stereo—in which condition 

(2D or stereo) did the DSC 1.2 codec perform better (artefacts less perceptible) or 

worse (artefacts more perceptible). The estimate values show that, among these 

5 images, artefacts were more visible in the 2D condition than in the stereo 

condition for all images except Clipboard which means that for these images DSC 

1.2 is more visually lossless in the stereo condition than the 2D condition.  
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Hypothesis 1.2 Effect of Symmetry of Compression: 

In hypothesis 1.2, a comparison between different compression vs same 

compression was done.  

Table 4: Comparison between different compression and same compression for 

each image with DSC 1.2 compression. 

 Experiment1_hypothesis 1.2_differentCompressionVSsameCompression_two 

tail 

contrast ref estimate SE p.value Sig. 

diff – same Barbara -0.023 0.03 0.460 FALSE 

diff – same CircularPattern26 -0.020 0.03 0.527 FALSE 

diff – same Clipboard 0.068 0.03 0.033 TRUE 

diff – same FemaleHorseFly -0.056 0.02 0.004 TRUE 

diff – same HintergroundMusik 0.016 0.03 0.608 FALSE 

diff – same Landscape102 -0.121 0.02 2.13e-07 TRUE 

diff – same Mandrill -0.014 0.03 0.603 FALSE 

diff – same MosaicBroadcom -0.099 0.03 3.12e-04 TRUE 

diff – same MysticMountain 0.029 0.03 0.325 FALSE 

diff – same Noise -0.028 0.01 0.006 TRUE 

diff – same Peacock 0.011 0.03 0.703 FALSE 

diff – same Tools -0.060 0.02 0.007 TRUE 

Table 4 shows estimated differences and the p values; images with p<0.05 

differences (two-tailed tests) are bolded indicating that the performance of DSC 

1.2 was significantly different between the two compression symmetry types for 

the image. For Clipboard, FemaleHorseFly, Landscape102, MosaicBroadcom,  
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Noise and Tools the difference between the performance with different and same 

compression for DSC 1.2 was significant. For these images we cannot accept the 

null hypothesis H0 (same-different=0). For remaining images, the difference was 

not significant, and we failed to reject the null hypothesis. Estimate values help us 

to determine, between different and same compression, in which condition 

artefacts were more perceptible. Table 4 shows that among 6 images with p<0.05, 

for all the images except Clipboard, artefacts were less visible with different 

compression than with same compression. The difference between the 

performance of different and same compression for DSC 1.2 is plotted in Figure 

4.12 which shows the average proportion correct for each image in the two cases. 

Clipboard behaved differently than all other images in that artefacts were less 

visible with same compression than with different compression. 
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Figure 4.12: Average proportion correct for different compression versus same 

compression when DSC 1.2 compression was used. Error bars represents ±1 

SE. 
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4.3 Discussion 

In Experiment 1, we assessed the effects of (1) disparity of the images relative to 

the screen and (2) the matching or symmetry of the compression errors in the left 

and right images. Generally, I found that when there was a difference in the 

visibility of compression artefacts they were less visible in (1) 2D images presented 

with a disparity (‘stereo’ condition, offset from the screen) than in 2D images 

presented at the screen plane and (2) when the compression errors in the two eyes 

differed compared to when they matched.   

I used 2D images (crops were different) that were previously used for extensive 

2D testing of the DSC protocol. This previous testing can serve as a baseline for 

comparison for these results obtained in an S3D display. Specifically, the 2D 

images with same compression should be equivalent to the baseline tests of the 

DSC codec. Allison et al. (personal communication, 2018) did the subjective 

assessment of DSC 1.2 in 2D condition using the same crops I used in my 

experiment. The results of my experiment for 2D images with same compression 

were consistent with their results. 

The use of 2D images with disparity allowed for assessment of the effects of 

displaying the images with a constant disparity with respect to the screen (a 

disparity pedestal) without the complications of variation in disparity within the  
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image as would be present in true stereoscopic images. For images where the 2D 

and 3D performance of the codec differed, the artefacts were more visible when 

the images were presented at the screen plane than with a disparity offset (stereo  

condition) except for the Clipboard image. In Section 2.4, I outlined several 

possible mechanisms that predict 2D and 3D differences. In the present 

experiment, the underlying mechanisms for this disparity pedestal effect cannot be 

due to stereoscopic factors such as spurious disparity or monocular features, 

distortion, rivalry and so on as the images in the two eyes were identical in the 

same compression case, except for an offset. Many perceptual judgements are 

most precise when the stimulus is foveated by both eyes and performance 

degrades with a disparity pedestal or fixation disparity (Regan and Gray 2009; 

Zaroff, Knutelska, and Frumkes 2003). However, this is unlikely to be the 

explanation for the pedestal effect in the present experiment as the subject’s 

fixation was not controlled and they were able and likely to converge on the 

stimulus during testing. This convergence though could indirectly be the cause of 

the disparity effect, the vergence demand but not the accommodation demand for 

the 2D and 3D conditions differed. Stereoscopically, the 2D images were on the 

screen plane while the 3D images were behind the screen plane but in both 

conditions optimal focus was at the screen distance. Normally when converging at 

a further distance the viewer should also accommodate at the further distance. If 

the observer’s accommodation shifted away from the screen plane when 



 

 68 

converging on the disparate stimulus (vergence accommodation) (Maddox 1886), 

this would result in more defocus blur for the 3D image than for the 2D case 

(Hoffman et al. 2008; S. Yang and Sheedy 2011). Mismatch between vergence 

and accommodation can also increase difficulty in fusing the stimuli and produce 

fixation disparity. This might have reduced the users’ artefact detection ability for 

3D images compared to 2D. However, the depth offset used in this experiment 

was modest and the predicted blur if the eyes focused on the far target would only 

be about 0.1 D, within the normal depth of field of the eye (Marcos, Moreno, and 

Navarro 1999), so any blur effect would be small.  

The use of 2D images also allowed for assessment of the effects of compression 

artefacts when they were identical in the two eyes’ images compared to when they 

differed, Generally, DSC 1.2 was more visually lossless when different 

compression was applied compared to when same compression was applied. 

Binocular summation could be a reason for perceiving artefacts more in same 

compression than different compression. Due to binocular summation the 

detection threshold for a stimulus is lower with two eyes than one eye. Visual 

acuity, contrast sensitivity, flicker perception, and brightness perception (Howard 

and Rogers 2012) can be improved by binocular summation as the information 

received in each eye are combined. Dichoptic masking could be a reason for 

perceiving artefacts less in the different compression. Dichoptic masking occurs 

when both eyes see the images of similar pattern. The detection of the test stimulus 
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in the one eye is prevented by the ‘mask’ stimulus in another eye. Masking is 

substantial when the images are similar. 

For two specific images among the 12 images, Mandrill and Peacock, the depth-

compression interaction had a significant effect on artefact perception. For both 

images, artefacts were more visible with same compression than different 

compression when the images had disparity (consistent with my general findings) 

but in the zero-disparity condition (Figure 4.9) artefacts were more visible with 

different compression. The zero-disparity same compression case consisted of 

two sub-conditions, one where the compressed image corresponded to the left 

image of the zero-disparity different compression case (condition 3a) and the other 

corresponded to the right image of the zero-disparity different compression case 

(condition 3b). In most cases the performance on these two cases was very similar 

but for the Mandrill and Peacock images the artefacts were noticeably more visible 

in the left image (Figure 4.5). The Mandrill and Peacock images both had very fine 

texture which could be a reason behind the significant differences in artefacts in 

conditions 3a and 3b. Figure 4.13 and Figure 4.14 point out the locations in the 

images (with disparity) where the difference between different compression (DC) 

and same compression (SC) are visible. These figures were obtained using S-

CIELAB ( Poirson and Wandell 1997), the results in errorImage (difference 

between two images) were calculated in CIELAB delta E units and the figures show 

the spatial distribution of the errors, highlighting errors that are 10 delta E units or 
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larger. Since these images have disparity, the common artefacts in both the left 

and right images appear twice with an offset corresponding to the disparity (so all 

artefacts are repeated except at the edges in the SC case). We can see that in the 

DC case that for the indicated locations (enclosed in boxes) the artefacts are not 

repeated or are attenuated in one copy indicating more artefacts (noise) in one 

image than in the other. For these two images the artefacts are more apparent in 

the left than the right eye consistent with the difference in detection of these 

artefacts in conditions 3a and 3b. The stereo same compression case used the 

same compressed source images as condition 3b. We showed in Figure 4.10 that 

when this data was used (instead of the combined condition 3a and 3b data) then 

both the stereo and 2D results for these images conformed to the general pattern 

of results where same compression was more visible than different compression. 

 

Figure 4.13: Difference between Left and Right images for Mandrill (different 

compression (left one) vs same compression (right one) in 3D) using S-CIELAB 

(showing spatial distribution of the errors) 
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Figure 4.14: Difference between Left and Right image for Peacock (different 

compression (left one) vs same compression (right one) in 3D) 

The exception to both the compression and disparity patterns was the Clipboard 

image where, artefacts were more perceptible for different compression than same 

compression and more visible in the stereo condition than in the 2D condition. The 

compression noise generated in the two eyes’ images of clipboard may be 

uncorrelated or independent which could make the artefacts more apparent in the 

3D condition compared to 2D.  Figure 4.16 shows differences in compression 

artefacts in the Clipboard images for the case where the images are in 

correspondence (with zero disparity). Thus, in the SC case when the left and right 

images are subtracted the images are identical and there is no difference in the 

resulting image. The DC images show locations where the artefacts do not match 

in the two images. It can be seen that there are significant regions where the 

artefacts do not match in the two eyes. Figure 4.17 shows the S-CIElab errors in 
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the left and right images (with disparity) relative to the reference. The errors appear 

similarly distributed as in the L-R difference image and most of the errors in each 

eye appear to be reflected in the difference errors. The strength of the difference 

signal in the different compression case (i.e. most of the artefacts do not match) 

may explain why artefacts were more visible in this condition. Significant regions 

of artefact are introduced along the edge of the image when shifted and this may 

underlie the increased detection rate in the 3D case.   

The most obvious difference between Clipboard and other images is that Clipboard 

contains text (Figure 4.15) while there is no text in any other image. However, there 

appears to be little compression noise near the text in Figure 4.16 suggesting this 

is not the cause of the unusual pattern of results with the Clipboard image.  Note 

that performance for Clipboard is near chance. Similarly, several of the images that 

showed non-significant effects of disparity or compression type had performance 

near chance (Barbara, CircularPattern and HintergroundMusik). Conversely, 

performance for noise was near ceiling. It is difficult to compare between conditions 

for images where performance is either near chance or ceiling as the statistical 

power of the comparisons is low (Wichmann and Hill 2001; McKee, Klein, and 

Teller 1985).  
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Figure 4.15: Clipboard 

 

Figure 4.16: Difference between Left and Right image for Clipboard (different 

compression (left one) vs same compression (right one) in 2D) 
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Figure 4.17: Difference between uncompressed and compressed image for 

Clipboard (Left eye (left one) vs right eye (right one)) 
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Experiment 2: 2D vs 3D using stereo images                                                                                     

In this experiment I used stereoscopic images to asses the effect of disparity of the 

Images or detectability of compression artefacts. The goals of the experiment were 

to see the performance of the codec in 2D vs 3D condition and to compare between 

two different level of compression. This allowed for assessment of the effects of 

disparity and to investigate whether there were images for which the performance 

of VDC-M 1.0.7 was different between disparity and no disparity conditions. 

5.1 Subjects and Conditions 

In Experiment 2, eleven subjects from the York University Community participated. 

All passed the vision screening tests, and no one was excluded for failing to detect 

control images. Participants ranged in age from 21 to 39. Among the participants 

four were female and seven were male. Each participant was paid $20/hour.  

In this experiment I used stereoscopic images and the VDC-M 1.0.7 was tested 

under three display conditions at each of two different levels of compression, 4:1 

compression (6bpp) and 6:1 compression (4bpp). The display conditions were as 

follows: 

1. Stereoscopic image pairs with disparity between left eye and right eye 

image. 

2 a. Left image presented to both eyes. In this case there is no disparity    
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       between the left eye and right eye images. 

2 b. As in condition 2a except the right image is used. 

The first condition was the normal stereoscopic condition and the second and third 

condition were 2D conditions for comparison. Like experiment 1, in this experiment 

I also presented a cropped portion (600 X 500 pixel) of an image instead of the 

full-size image. The source images were 24-bit RGB stereoscopic images that I 

resized to 1920 x 1200 pixels to produce the reference images. 

For condition 1, subjects were presented separate left and right views of the same 

scene as stereoscopic images. So, there was disparity between images and they 

appeared in stereoscopic 3D depth behind the screen plane. Cropping was done 

after compression producing three crops for each stereo pair of images: one pair 

at 4:1 compression, another pair at 6:1 compression and one pair uncompressed. 

For condition 2 a and 2 b, only the cropped left image or cropped right image of 

the pair were used, respectively. 

VDCM 1.0.7 compressions at both compression levels were tested for all the three 

conditions by all eleven viewers. That is, each viewer tested VDCM 1.0.7 4:1 

compression for all the viewing condition and image combinations and tested 

VDCM 1.0.7 6:1 compression for all the viewing condition and image combinations.   
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5.2 Stimuli 

In experiment 2, twelve stereoscopic images were used which were selected from 

1003 images. Selection was based on 4:1 compression but the same set of images 

was used for both 4:1 and 6:1 compression.  

I collected 980 stereoscopic images from the image sharing website Flickr (Flickr 

website 2018) and 23 images were selected from the Middleburry dataset which is 

used as a ground truth dataset for evaluating computer vision algorithms 

(Scharstein et al. 2014) . In the Flickr source images left and right eye images were 

combined side-by-side in one image so were separated into individual left and right  

eye images. All the 1003 images collected were in jpg format and I converted them 

to ppm format for lossless intermediate processing. As the source images were in 

jpg format they are already compressed, this compression may affect the artefact 

detection for VDC-M compression. But as jpg is one of the most commonly used 

formats for images, it is also desirable to see the effects of additional compression 

artefacts of VDC-M on the perceived quality of jpeg-formatted source images. As 

all the Flickr source and Middleburry images were larger than 1920 x 1200 in pixel 

resolution, I resized (by using ‘bicubic’ interpolation which is the default method for 

‘imresize’ function in MATLAB) the Flickr and Middleburry source images to 

monitor resolution and then flipped the images so that in the mirror stereoscopic 

display viewers could see the actual image instead of its reflected version. Then 

these images were compressed by the VDC-M 1.0.7 codec at 4:1 compression 



 

 78 

level. These were subsequently decompressed to produce 24-bit images for 

display corresponding to the compressed images. PSNR for the set of compressed 

images relative to the Flickr source images was computed and sorted based on 

following criteria.  

• The 30 lowest PSNR in either the left or right eye image (i.e. if the left 

eye had the lowest PSNR then the left, if the right eye had the lowest 

PSNR then we would use that). The goal was to pick the lowest PSNR 

images regardless of which eye. (these were the most difficult images 

for the codec i.e. these images should be lossy as their PSNR was 

lowest). 

• The next 10 images from the remaining 950 images with the lowest 

average PSNR of left and right eye image. This selected for images 

with low PSNR in both eyes’ images.  

• The next 10 images from the remaining 940 images with the biggest 

difference of PSNR between left and right eye image. This selected 

for images where the compression artefacts were unbalanced and 

predominantly in one half image. 

Then I viewed these 73 images in the stereoscopic display and discarded images 

with excessive disparity or mismatch in focus, contrast or exposure between the 

two images (i.e., images that caused excessive visual discomfort (Lambooij et al.  
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2009; Tam et al. 2011) ),or had poor colour or excessive blur. Based on these 

criteria I selected 31 images (13 image from Flickr and 18 images from the 

Middleburry set) for the next step. Then three experienced observers identified 

perceptible artefact regions in the images using the flicker paradigm on the entire 

(not cropped) images. Forty-five artefact or flicker locations were selected from 

thirty-one images: twenty-four crops from thirteen Flickr source images and the 

rest of the crops were from the 18 Middleburry images. The crop size was 600 x 

500 pixels. I viewed the reference and compressed cropped images in the 

stereoscope and some had excessive (diplopic) disparity or window violations that 

created visual discomfort for these image pairs in the stereoscope.  

Additionally, the Middlebury images were taken with parallel cameras and always 

appeared in front of the screen. To improve visual comfort the resized and flipped 

images were shifted and the convergence was adjusted: the left images were 

shifted to right and right images were shifted to left to change the apparent position 

of the objects relative to the screen until a comfortable view was obtained. Then I 

cropped the shifted image in the original crop position. A comfortable view could 

not be obtained for four image crops and these were excluded leaving 41 cropped 

images.  
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Based on flicker testing with these images I selected 23 cropped images based on 

following criteria: 

• Artefacts were visible in both 2D and stereoscopic view 

• Artefacts were difficult to find out in both 2D and stereoscopic view 

• Artefacts were more visible in 2D compared to S3D view 

Among these 23 selected images, based on criteria 1, I selected 9 images, 9 

images were selected according to 2nd criteria and 5 images were included based 

on 3rd criteria. The final twelve crops were selected from these 23 cropped images 

based on the opinion/perception of two expert viewers. In this way I finalized a set 

of twelve images shown in Figure 5.1, Fig. 5.2 and Fig. 5.3.  
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Right eye image Right eye image Left eye image 

Crossed Un-Crossed 

Figure 5.1: Four cropped images for experiment 2 
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Right eye image Left eye image Right eye image 

Crossed Un-Crossed 

Figure 5.2: Four cropped images for experiment 2 
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Figure 5.3: Four cropped images for experiment 2 

Right eye image Right eye image Left eye image 

Crossed Un-Crossed 
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The images and crops were selected based on analysis and viewing at 4:1 

compression but the same choices were used for both 4:1 and 6:1 compression. 

An identical process of compression, shifting and cropping was performed on the 

same set of twelve images with VDC-M 1.0.7 at 6:1 compression. This resulted in 

two sets of 12 images with two different level of compression. 

5.3 Procedure 

The codec was tested for two of the three conditions at each of two different levels 

of compression for a given viewer. Six subjects were tested for condition 1 and 2a 

and remaining 5 subjects were tested for condition 1 and condition 2b. I did not 

expect systematic differences between 2D viewing of the left versus right image, 

but this procedure allowed me to evaluate this assumption.  For each condition all 

12 images were presented to the user. For each level of compression, the trials 

were divided into 10 blocks containing two trials per image per condition, presented 

in random order. So, each of the 12 images was displayed 20 times for each 

condition resulting in 240 experimental trials per condition at each compression 

level and each of the 3 control images was displayed 20 times for each 

compression level resulting in 60 control trials per compression level. While the 

control images were not compressed with the target codec, they were included in 

sessions for both codecs. Thus, the experiment consisted of 1080 trials per 

observer ((240 experimental trials x 2 conditions x 2 compression levels) + (60  
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control trials x 2 compression levels)). The control images were heavily 

compressed using JPEG 2000 with a quality 10, the purpose of using these images 

was the same as in experiment 1.  

As the cropped image size was larger than in experiment 1, the viewing time 

needed to be increased. I set the viewing time to 8 s based on pilot testing that 

suggested this gave the subject sufficient time to scan the crop and find areas that 

flickered. Total time calculated for 20 blocks plus the time for vision screening was 

3 h 20 minutes (1 h 40 minutes for each compression level). As this is a long time 

for a participant to keep their concentration, I divided each experiment (one with 

6:1 compression level and another 4:1 compression level) into two sessions. The 

first session was about 1hr, allowing for vision screening and running 5 blocks. The 

2nd session was about 40 minutes when the rest of the 5 blocks were tested. I 

maintained a minimum 1 h gap between the two sessions so that the users could 

rest. The task of participants in this experiment was same as in the previous 

experiment. The next image pair appeared after the participant gave his/her 

response. 
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5.4 Results  

In experiment 2, VDC-M 4:1(6 bpp) and VDC-M 6:1(4 bpp) were tested for different 

viewing conditions. I tested 4 hypotheses:  

Hypothesis 2.1: As in experiment 1, I compared the performance of the  

compression algorithm for stereoscopic vs 2D conditions regardless of 

compression rate. The main hypothesis to be tested was that the sensitivity to 

VDC-M compression artefacts differed between stereoscopic images (condition 1) 

and equivalent binocularly-viewed 2D images (conditions 2a and 2b). Thus, testing 

of Hypothesis 2.1 assessed whether there was a significant difference between 

compressed images with disparity[stereo] and compressed images with no 

disparity[2D] (i.e., the null hypothesis was that stereo-2D = 0).  

Hypothesis 2.2: As floor effects are less likely for 6:1 compression the effect of 

viewing condition might be more apparent here. Therefore, I hypothesized that 

performance in the stereo vs 2D conditions might differ, but for only 6:1 

compression of VDC-M 1.0.7. Thus, testing of Hypothesis 2.2 was based on linear 

contrasts comparing the stereo vs. 2D conditions for the for 6:1 compression case. 

Hypotheses 2.3 and 2.4: I tested VDC-M for two compression rates: 6 bpp and 4 

bpp; I expected that the compression errors and hence the compression 

performance at 4 bpp should be worse (artefacts more detectable) than the 

performance at 6bpp for both stereo and 2D conditions. Tests of Hypothesis 2.3 

assessed whether artefacts were more detectable for compressed stereoscopic 
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images at 4 bpp compression than at 6 bpp (i.e., the null hypothesis was that 

4bpp-6bbp <= 0 for stereo images). Tests of Hypothesis 2.4 assessed the 

equivalent comparison for 2D images (i.e., the null hypothesis was that 4bpp-6bpp 

<= 0 for 2D images).    

 

For above all hypothesis tests we compared the relative performance of VDC-M 

between different conditions. Our aim was not to find out for which condition VDC-

M was visually lossless or not. All the data collected were fitted using GLMM to 

test the above hypothesies. 
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Descriptive Result: 

 

 
Figure 5.4: Sample proportion correct under different conditions for VDC-M 1.0.7 (6bpp 

and 4bpp) compression (part 1) (6bpp = 4:1 compression, 4bpp = 6:1 compression, 

2DBothEyesRight = Right image in both eyes, 2DBothEyesLeft = Left image in both 

eyes). Error bars represents ±1 SD. 
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Figure 5.5: Sample proportion correct under different conditions for VDC-M 1.0.7 

(6bpp and 4bpp) compression (part 2). Error bars represents ±1 SD. 
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Figure 5.6: Sample proportion correct under different conditions for VDC-M 1.0.7 

(6bpp and 4bpp) compression (part 3). Error bars represents ±1 SD. 
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Fig. 5.4, 5.5 and 5.6 shows proportion correct score data for VDC-M 1.0.7 (both 6: 

1 and 4:1 compression) for each image tested for Experiment 2. In the figure, the 

mean proportion correct across observers is represented by a square, error bars 

represents ±1 standard deviation and the range of scores is indicated by upward 

and downward triangles. All data was included as all subjects had proportion 

correct above 0.95 for control images.  

This figure helps us to get an idea in which conditions VDC-M 1.0.7 was visually 

lossless or not. The codec meets the visually lossless criteria (based on the 

mean+standard deviation version) in all conditions except in the Stereo33533 

image at 4 bpp.  although some observers performed above 0.75 in a few of the 4 

bpp condtions. It also gives us a rough idea of relative performance, but we cannot 

make pairwise within subjects comparisons through this plot.  

GLMM analysis: 

Like the analysis for Experiment 1, I did a GLMM analysis for this experiment. The 

R statistical software environment (R Core Team 2017) was used for the analysis 

and data was fitted through maximum likelihood estimation using the ‘glmer’ 

procedure in package lme4. Before fitting GLMM, control data was excluded 

because it did not include factors of interest and including control data can cause 

convergence failure as the response proportions were all 1.0 for control data. My 

main hypotheses were that there would be significant effects of both depth and 
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compression ratio. Depth has two levels: stereoscopic (stereo, Conditions 1) and 

2D (Conditions 2a,b); whereas bpp (bit per pixel) also has two levels: 6 bpp (4:1 

compression level) and 4 bpp (6:1 compression level). To address the hypotheses 

and to test for possible interaction of depth and bpp on the artefact visibility, I used 

the following formula for the model (see section 4.2.2 for notation): 

correct ~ depth * bpp + (1 | subject) + (1 | ref) 

For the above formula, the depth and bpp are modeled as fixed effects whereas 

subject ID and image (ref) are considered as random effects. The error distribution 

of the response variable was modelled as a binomial distribution.  

The summary of the GLMM analysis for the above formula is as following: 

Table 5: Effect of interaction between depth and compression for 2nd set of 
images (Variables: 2 depth conditions (stereo, 2D), 2 compression (bpp) 

conditions (6, 4), 11 subjects, 12 reference images) 

 Estimate Std. Error z value Pr(>|z|)     

(Intercept)                    0.096    0.05      2.05    0.041 * 

depthstereo -0.006    0.06  -0.11     0.912  

bpp6 -0.057 0.06 -1.05     0.295  

depthstereo:bpp6    0.023   0.08    0.30  0.770   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

The above summary shows that there was no significant effect for interaction 

between depth and bpp for random image and random subject. There were also 

no significant main effects. 

Despite the lack of main effects, I had specific hypothesises which I followed up 

with two further analyses. The model formulas for assessing the hypotheses are 

as follows: 
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correct ~ ref * depth + (1|subject)                                                          

correct ~ ref * bpp + (1|subject)                                                             

where 1st formula is for testing hypothesis 2.1 and 2.2 and the 2nd formula is for  

testing hypothesis 2.3 and 2.4. The model assumed that image (ref) was a fixed 

effect for these analyses so that I could estimate the effects of depth and bpp on 

individual images. For hypothesis 2.1 and hypothesis 2.2, two-sided pairwise 

comparisons were done while one-sided pairwise comparisons were used for  

hypothesis 2.3 and hypothesis 2.4 as we predict higher compression ratios 

produce more artefacts. Significance level for all hypotheses was set at 0.05 and 

False Detection Rate (FDR) p-value correction was applied in all hypothesis tests. 

To test hypothesis 2.1, I compared proportion correct data between no disparity 

(2D) and disparity (stereo) for both 4:1 and 6:1 compression rate (i.e., collapsed 

across compression levels). From the results of these comparisons presented in 

Table 6, I can see that there were no significant differences between 2D vs stereo 

for any of the 12 images. The data are plotted in Fig. 5.7 which shows the mean 

for each image in the 2D and stereo conditions and confirms the similarity of the 

2D and stereo performance. Thus, I can conclude that performance of VDC-M 

1.0.7 with stereo images was not significantly different from the performance of 

VDC-M 1.0.7 with 2D images.  
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Table 6: Comparison between 2D versus Stereo for each image with VDC-M 

1.0.7 (6:1 & 4:1) compression. 

 Experiment2_hypothesis 2.1_2DvsStereo_two tail 

contrast ref estimate SE p.value sig 

2d – stereo 0018RIMG_1098 0.025 0.03 0.457 FALSE 

2d – stereo ABD_31451 -0.014 0.03 0.686 FALSE 

2d – stereo Adirondack3 2.51e-06 0.03 0.999 FALSE 

2d – stereo Applepicking_23 -0.043 0.03 0.199 FALSE 

2d – stereo Aryaa1 -0.007 0.03 0.839 FALSE 

2d – stereo Backpack1 -0.111 0.03 0.736 FALSE 

2d – stereo Motorcycle1 0.002 0.03 0.946 FALSE 

2d – stereo Piano1 0.018 0.03 0.589 FALSE 

2d – stereo Recycle 0.009 0.03 0.787 FALSE 

2d – stereo Shelves2 0.021 0.03 0.543 FALSE 

2d – stereo Stereo33533 0.007 0.03 0.838 FALSE 

2d - stereo Sticks -0.023 0.03 0.499 FALSE 

h 
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Figure 5.7: Average proportion correct for 2D and stereo condition when VDCM 

1.0.7 (collapsed across 6bpp and 4bpp) compression was used. Error bars show 

±1 SE. 
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Table 7: Comparison between 2D and Stereo for each image with VDC-M 1.0.7 

 (6:1) compression. 

 Experiment2_hypothesis 2.2_2DvsStereo_4bpp_two tail 

contrast ref estimate SE p.value sig 

2d – stereo 0018RIMG_1098 0.023 0.05 0.632 FALSE 

2d – stereo ABD_31451 -0.014 0.05 0.774 FALSE 

2d – stereo Adirondack3 -0.005 0.05 0.924 FALSE 

2d – stereo Applepicking_23 -0.073 0.05 0.126 FALSE 

2d – stereo Aryaa1 -0.027 0.05 0.567 FALSE 

2d – stereo Backpack1 -0.036 0.05 0.445 FALSE 

2d – stereo Motorcycle1 0.023 0.05 0.633 FALSE 

2d – stereo Piano1 0.068 0.05 0.151 FALSE 

2d – stereo Recycle -0.036 0.05 0.445 FALSE 

2d – stereo Shelves2 0.086 0.05 0.069 FALSE 

2d – stereo Stereo33533 0.036 0.05 0.427 FALSE 

2d - stereo Sticks -0.027 0.05 0.566 FALSE 

Inspection of Figure 5.7 shows that performance was typically near chance levels 

for all images. We expect that detection rate for artefacts should be higher for 

compression at 4 bpp compared to 6 bpp. Thus, Hypothesis 2.2 proposed that 

there would be differences between stereo and 2D conditions for 4 bpp (6:1) 

compression. The results of these comparisons are shown in Table 7. Similar to 

the results in the full dataset there were no significant differences between 2D vs 

stereo conditions for any image. Figure 5.8 plots proportion correct data for 4 bpp  
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compression for each image in both 2D and stereo conditions. Note that for all 

images’ performance is near 0.5, so near chance performance, this floor effect 

limits the ability to test for difference between conditions even in the 4 bpp case. 

 

Figure 5.8: Average proportion correct for 2D versus stereo condition when 

VDCM 1.0.7 (4bpp) compression is used. Error bars shows ±1 SE. 
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Table 8: Comparison between 4 bpp (6:1) versus 6 bpp (4:1) compression for 

each image in stereo condition. 

 Experiment2_hypothesis 2.3_4bppVS6bpp_stereo_right tail 

contrast ref estimate SE p.value sig 

4bpp – 6bpp 0018RIMG_1098 0.032 0.05 0.252 FALSE 

4bpp – 6bpp ABD_31451 -0.018 0.05 0.649 FALSE 

4bpp – 6bpp Adirondack3 0.014 0.05 0.387 FALSE 

4bpp – 6bpp Applepicking_23 0.005 0.05 0.462 FALSE 

4bpp – 6bpp Aryaa1 -0.009 0.05 0.576 FALSE 

4bpp – 6bpp Backpack1 0.022 0.05 0.317 FALSE 

4bpp – 6bpp Motorcycle1 -0.045 0.05 0.830 FALSE 

4bpp – 6bpp Piano1 0.018 0.05 0.351 FALSE 

4bpp – 6bpp Recycle 0.045 0.05 0.170 FALSE 

4bpp – 6bpp Shelves2 -0.077 0.05 0.948 FALSE 

4bpp – 6bpp Stereo33533 0.091 0.05 0.026 TRUE 

4bpp – 6bpp Sticks 0.027 0.05 0.283 FALSE 

The effects of VDC-M 1.0.7 compression level were explicitly addressed in 

Hypothesis 2.3 for the subset of stereo conditions and Hypothesis 2.4 for the 2D 

conditions. As I expected that the performance for 4 bpp (6:1) compression would 

be worse than 6 bpp (4:1) compression, a one tail pairwise comparison was 

conducted to test the hypotheses. Table 8 shows the results of this comparison for 

the stereo conditions (Hypothesis 2.3) and the corresponding data is plotted in 

Figure 5.9. The only image where the performance at 6bpp was significantly  
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different from 4bpp was Stereo33533. From the plot we can see that the difference 

between the mean 4bpp and 6bpp for Stereo33533 was comparatively larger than 

for the other images.  

 

Figure 5.9: Average proportion correct for 4bpp versus 6bpp in stereo condition 

when VDC-M 1.0.7 compression was used. Error bars shows ±1 SE. 



 

 100 

Table 9: Comparison between 4 bpp (6:1) versus 6bpp (4:1) compression for 

each image in 2D condition. 

 Experiment2_hypothesis 2.4_4bppVS6bpp_2D_right tail 

contrast ref estimate SE p.value sig. 

4 bpp – 6 bpp 0018RIMG_10

98 

0.027 0.05 0.283 FALSE 

4 bpp – 6 bpp ABD_31451 -0.018 0.05 0.649 FALSE 

4 bpp – 6 bpp Adirondack3 0.005 0.05 0.462 FALSE 

4 bpp – 6 bpp Applepicking_

23 

-0.055 0.05 0.874 FALSE 

4 bpp – 6 bpp Aryaa1 -0.050 0.05 0.853 FALSE 

4 bpp – 6 bpp Backpack1 -0.027 0.05 0.717 FALSE 

4 bpp – 6 bpp Motorcycle1 -0.005 0.05 0.538 FALSE 

4 bpp – 6 bpp Piano1 0.118 0.05 0.006 TRUE 

4 bpp – 6 bpp Recycle -0.046 0.05 0.830 FALSE 

4 bpp – 6 bpp Shelves2 0.055 0.05 0.126 FALSE 

4 bpp – 6 bpp Stereo33533 0.150 0.05 0.0006 TRUE 

4 bpp – 6 bpp Sticks 0.018 0.05 0.351 FALSE 

I did a similar comparison of the performance of VDCM 1.0.7 for 4bpp vs 6bpp in 

the 2D conditions to test hypothesis 2.4. The results of these comparisons are 

shown in Table 9 and the difference between performance can be visualized in 

Figure 5.10 by comparing the mean for 4bpp vs 6bpp. For two images, Piano1 and 

Stereo33533, the compression algorithm performed significantly worse (artefacts 

were more visible) at 4 bpp than at 6 bpp. 
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Figure 5.10: Average proportion correct for 4bpp and 6bpp in 2D condition when 

VDCM 1.0.7 compression was used. Error bars shows ±1 SE. 
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Only two images (Figure 5.11) showed significant effects of compression: 

Stereo33533 for both stereo and 2D cases and Piano1 for 2D images. The 

distinguishing feature of Stereo33533 is that it is a natural scene which contains a 

fine green leafy pattern and in Piano1 the floor carpet has a noise like texture. Due 

to these features, the codec faced more difficulty in compressing these images 

compared to others which made it possible to see the difference between 4 bpp 

and 6 bpp for these two images. Most of the remaining images were relatively easy 

for the codec to compress and performance was near chance at both 4 bpp and 6 

bpp. 

  

Figure 5.11: Piano1 and Stereo33533 (Left eye) 
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Discussion, Conclusion and Future Work 
 

6.1 Discussion 

During my thesis I tested the perception of compression artefacts in stereoscopic 

display for two different sets of images in both 2D and 3D (stereo) conditions. For 

the 1st experiment image set, I found that for three images (FemaleHorseFly, Noise 

and Tools) in all conditions DSC 1.2 faced difficulties performing as a visually 

lossless codec and for ‘Tools’ this was consistent with VESA 2D testing of these 

images (Allison et al. 2017).  

The main objectives were to determine the effects of stereoscopic depth and 

symmetry of artefacts between half images. I found that for two specific images 

(Mandrill and Peacock) there was a significant effect of interaction between the 

depth (2D or stereo) and compression (same or different) on the visibility of 

compression artefact. For 4 images (CircularPattern26, Landscape102, Mandrill 

and Tools) DSC 1.2 performed significantly better for stereo images than 2D (i.e., 

stereo vision was silencing the artefact perception for these images) but for 

Clipboard artefacts were significantly more visible in stereo images than 2D. In 5 

images (FemaleHorseFly, Landscape 102, MosaicBroadcom, Noise, Tools) 

artefacts were significantly less perceptible in images with different compression 

compared to images with same compression. The exception again was Clipboard 
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where the codec performed significantly better for same compression than for 

different compression. Thus, I conclude that both disparity and symmetry of 

compression artefacts affect artefact visibility which is consistent with the findings 

in (Chen, Bovik, and Cormack 2011). 

For the 2nd set of images VDCM 1.0.7 performed as visually lossless for all images 

and in most of the cases the mean was around 50% which indicates guessing of 

the observers in detecting flicker images that is, there was a floor effect. The floor 

effect in Experiment 2 does not call into question the practical relevance of the 

results in Experiment 1. Experiment 1 is aimed at determining, for the (relatively 

rare) cases where artefacts are visible, whether stereoscopic viewing or 

compression symmetry are factors in the detectability of these artefacts. The fact 

that the codec normally works well does not imply that it may or may not be 

sensitive to disparity and compression differences.  

In the 2nd Experiment, the performance of the codec was not significantly different 

between the 2D and stereo images at both levels (4 bpp, and 6 bpp) of 

compression. I compared the artefact perception between two compression levels 

for stereo and 2D images which showed that in both 2D and stereo, 6 bpp performs 

significantly better than 4 bpp for “Stereo33533” and in 2D, 6 bpp performs 

significantly better than 4 bpp for “Piano 1”. As most of the images in the 2nd image 

set exhibited flicker detection rates was near chance and performance for 2D and 

stereo images did not differ significantly, the images used for 2nd experiment were 
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comparatively harder for the subjects to detect the flickering but easier for the 

codec to compress. This can be seen in the PSNR (Appendix A) which are 

relatively high. So, I cannot come to a conclusion for the 2nd set of images like the 

1st set of images for which I found significant difference between 2D and 3D 

performance. As in many applications we use different types of images and some 

types of images could be easier for the codec and some could be harder for the 

codec to compress, it is important to choose the representative images 

(comparatively harder for the codec and different types) to test a codec like VDC-

M to get a generalized conclusion.  To get a conclusive answer, an experiment 

with images which are challenging for the codec is necessary. One of the ways of 

getting challenging images is rendering images. For this, some difficult images can 

be selected from the 1st set and we can get a crop from each of selected images 

and can render stereo images using those crops as textures. The compression 

quality can be controlled by varying the slice size of VDC-M, normally a larger slice 

size provides better quality images (less artefacts). But as we are interested to see 

the viewer response on the images with more artefacts, we can compress images 

more harshly by varying (reducing) the slice size. A subjective experiment with the 

rendered images along with some of the 2nd set images (which are comparatively 

harder for the codec, e.g., Stereo 33533) may help us to find the differences 

between stereoscopic and 2D presentation. It will be necessary to test the codec 
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with more challenging, engineered and rendered images to come to a clear 

conclusion. 

6.2 Conclusions  

In my thesis I tried to assess the human perception of image compression 

artefacts. It is always desirable that the visually lossless property of a compression 

codec be obtained because we know in many cases compression artefacts may 

lead to misunderstanding of information in images e.g. in health and treatment 

related images, and in images related to national security (defense). Moreover, 3D 

display is becoming more popular, and people are getting more interested in VR  

(Virtual Reality) using HMDs (Head Mounted Displays). In all these cases, we 

would prefer to use a compression codec which can provide visually lossless 

images. As objective measurement is not sufficient to assess the visually lossless 

property, it is necessary to assess any compression codec subjectively to verify 

the visually lossless property.  

In my thesis I did subjective assessment for DSC 1.2 and VDC-M 1.0.7 with two 

sets of images to assess their performance in 2D vs 3D and found that for one set 

of images (2D with disparity) DSC performs better in 3D compared to 2D and for 

another set of images (the stereoscopic images), no conclusive result was 

obtained and further investigation is needed to come to a conclusion. 
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6.3 Future Work  

For virtual reality applications, Head Mounted Displays are used. The optics used 

in HMDs can cause Chromatic Aberration. When light passes through a lens, the 

lens can fail to converge different wavelengths of light at the same point due to 

variation in refractive indices with wavelength. This is called chromatic aberration. 

Due to chromatic aberration, colored fringes become visible around the object and 

are more apparent in edges of the image compared to the center. In most modern 

HMDs, the image is pre-transformed (distorted) so that the lens can provide a 

corrected image after chromatic aberration. Using this distortion correction, we can 

reduce chromatic aberration but cannot remove it. Because each color channel  

comprises of a range of visible wavelengths each of which is refracted by a 

different amount by the lens, we can distort the images for each color channel 

(e.g., R, G, B) to bring the peak frequencies back into spatial alignment but it may 

not possible to compensate for the aberration within each color channel.  

The flicker paradigm can be used to do the assessment of artefacts in the 

compressed image with chromatic aberration. In order to see the artefacts in 

chromatic aberration images, I distorted the 2nd experiment image set with barrel 

distortion by varying the distortion coefficient for each color channel, as a result I 

got some images with chromatic aberration and then I compressed those images 

with VDCM 1.0.7 6:1 compression and then inverse distorted the compressed 

images. 
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I compared those compressed images with the uncompressed images applying 

the flicker protocol; in some images (e.g., 0018RIMG_1098, ABD_31451, 

Applepicking_23, Stereo33533) I saw that flicker was more apparent for the 

compressed image with chromatic aberration than the compressed image without 

chromatic aberration. Figure 6.1 shows those images in full size and Figure 6.2 

shows the cropped portions, the regions highlighted with a black circle or black 

rectangular show more flicker for compressed images with chromatic aberration 

compared to compressed images without chromatic aberration. But I cannot make 

firm conclusions regarding this from this pilot testing, to get a concrete decision 

subjective assessment is necessary. 
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0018RIMG_1098 Stereo33533 

  

ABD_31451 Applepicking_23 

Figure 6.1: Full images which show more flicker in the compressed images with 

chromatic aberration compared to compressed images without chromatic 

aberration 
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            0018RIMG_1098                                                Stereo33533 

   

ABD_31451 

 
Applepicking_23 

Figure 6.2: Cropped region of the images which show more flicker in the 

compressed images with chromatic aberration compared to compressed images 

without chromatic aberration.              
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Appendix 

Table 10: PSNR of group 1 images DSC 1.2 compression 

Image PSNR value 

Barbara 43.09027 

CircularPattern26 34.83199 

Clipboard 43.46617 

FemaleHorseFly 42.28563 

HintergroundMusik 34.16949 

Landscape102 31.91763 

Mandrill 34.25364 

MosaicBroadcom 34.96823 

MysticMountain 40.179 

Noise 27.40965 

Peacock 37.3827 

Tools 36.16092 
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Table 11: PSNR of group 2 images VDCM 1.0.7 compression 

 VDCM 1.0.7 4:1 compression VDCM 1.0.7 6:1 compression 

Image Left Right Left Right 

Applepicking_23 47.7089 48.42846 41.98305 42.97548 

ABD_31451 48.12504 48.26707 42.87653 43.11858 

Sticks 50.9261 49.30327 48.40558 46.01847 

Recycle 53.01836 53.02093 50.21592 50.22285 

Piano1 50.82574 50.70926 47.59869 47.37512 

Shelves2 51.76947 51.88736 49.01531 49.07846 

Aryaa1 48.39568 48.00381 44.65459 43.87826 

Backpack1 50.55872 50.313 47.96689 47.56243 

Stereo33533 43.54409 43.24134 36.7356 36.42986 

Adirondack3 51.87927 51.9694 49.34984 49.43008 

Motorcycle1 50.78851 50.81398 48.26455 48.28291 

0018RIMG_1098 49.20521 51.68001 41.75922 46.61259 

 

 

 


