4,287 research outputs found
Probing the origin of fluorescence quenching of graphene-porphyrin hybrid material
We report transient absorption spectroscopic studies on the hybrid material composed of porphyrin molecules covalently attached to graphene for investigating the mechanism underlying the reported fluorescence quenching of porphyrin in the hybrid [1]. Excited state dynamics of pure graphene suspension and porphyrin have also been studied as reference samples. A fast excited state decay was observed in the hybrid
A constitutive model for unsaturated cemented soils under cyclic loading
On the basis of plastic bounding surface model, the damage theory for
structured soils and unsaturated soil mechanics, an elastoplastic model for
unsaturated loessic soils under cyclic loading has been elaborated. Firstly,
the description of bond degradation in a damage framework is given, linking the
damage of soil's structure to the accumulated strain. The Barcelona Basic Model
(BBM) was considered for the suction effects. The elastoplastic model is then
integrated into a bounding surface plasticity framework in order to model
strain accumulation along cyclic loading, even under small stress levels. The
validation of the proposed model is conducted by comparing its predictions with
the experimental results from multi-level cyclic triaxial tests performed on a
natural loess sampled beside the Northern French railway for high speed train
and about 140 km far from Paris. The comparisons show the capabilities of the
model to describe the behaviour of unsaturated cemented soils under cyclic
loading
Surface Incompressibility from Semiclassical Relativistic Mean Field Calculations
By using the scaling method and the Thomas-Fermi and Extended Thomas-Fermi
approaches to Relativistic Mean Field Theory the surface contribution to the
leptodermous expansion of the finite nuclei incompressibility has been
self-consistently computed. The validity of the simplest expansion, which
contains volume, volume-symmetry, surface and Coulomb terms, is examined by
comparing it with self-consistent results of the finite nuclei
incompressibility for some currently used non-linear sigma-omega parameter
sets. A numerical estimate of higher-order contributions to the leptodermous
expansion, namely the curvature and surface-symmetry terms, is made.Comment: 18 pages, REVTeX, 3 eps figures, changed conten
Mass coupling and ^3$He in a torsion pendulum
We present results of the and period shift, , for He
confined in a 98% nominal open aerogel on a torsion pendulum. The aerogel is
compressed uniaxially by 10% along a direction aligned to the torsion pendulum
axis and was grown within a 400 m tall pancake (after compression) similar
to an Andronikashvili geometry. The result is a high pendulum able to
resolve and mass coupling of the impurity-limited He over the
whole temperature range. After measuring the empty cell background, we filled
the cell above the critical point and observe a temperature dependent period
shift, , between 100 mK and 3 mK that is 2.9 of the period shift
(after filling) at 100 mK. The due to the He decreases by an order
of magnitude between 100 mK and 3 mK at a pressure of bar. We
compare the observable quantities to the corresponding calculated and
period shift for bulk He.Comment: 8 pages, 3 figure
How backscattering off a point impurity can enhance the current and make the conductance greater than e^2/h per channel
It is well known that while forward scattering has no effect on the
conductance of one-dimensional systems, backscattering off a static impurity
suppresses the current. We study the effect of a time-dependent point impurity
on the conductance of a one-channel quantum wire. At strong repulsive
interaction (Luttinger liquid parameter g<1/2), backscattering renders the
linear conductance greater than its value e^2/h in the absence of the impurity.
A possible experimental realization of our model is a constricted quantum wire
or a constricted Hall bar at fractional filling factors nu=1/(2n+1) with a
time-dependent voltage at the constriction.Comment: 7 pages, 2 figure
Quantum Pumping and Quantized Magnetoresistance in a Hall Bar
We show how a dc current can be generated in a Hall bar without applying a
bias voltage. The Hall resistance that corresponds to this pumped current
is quantized, just as in the usual integer quantum Hall effect (IQHE). In
contrast with the IQHE, however, the longitudinal resistance does not
vanish on the plateaus, but equals the Hall resistance. We propose an
experimental geometry to measure the pumped current and verify the predicted
behavior of and .Comment: RevTeX, 3 figure
Phase Separation Based on U(1) Slave-boson Functional Integral Approach to the t-J Model
We investigate the phase diagram of phase separation for the hole-doped two
dimensional system of antiferromagnetically correlated electrons based on the
U(1) slave-boson functional integral approach to the t-J model. We show that
the phase separation occurs for all values of J/t, that is, whether or with J, the Heisenberg coupling constant and t, the hopping
strength. This is consistent with other numerical studies of hole-doped two
dimensional antiferromagnets. The phase separation in the physically
interesting J region, is examined by introducing
hole-hole (holon-holon) repulsive interaction. We find from this study that
with high repulsive interaction between holes the phase separation boundary
tends to remain robust in this low region, while in the high J region, J/t
> 0.4, the phase separation boundary tends to disappear.Comment: 4 pages, 2 figures, submitted to Phys. Rev.
Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment
A Hadron Blind Detector (HBD) has been developed, constructed and
successfully operated within the PHENIX detector at RHIC. The HBD is a
Cherenkov detector operated with pure CF4. It has a 50 cm long radiator
directly coupled in a window- less configuration to a readout element
consisting of a triple GEM stack, with a CsI photocathode evaporated on the top
surface of the top GEM and pad readout at the bottom of the stack. This paper
gives a comprehensive account of the construction, operation and in-beam
performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method
Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films
In Raman spectra of cuprate superconductors the gap shows up both directly,
via a redistribution of the electronic background, the so-called "2Delta
peaks", and indirectly, e.g. via the renormalization of phononic excitations.
We use a model that allows us to study the redistribution and the related
phonon self-energy effects simultaneously. We apply this model to the B_1g
phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution
enables us to investigate under- and overdoped samples. While various
self-energy effects can be explained by the strength and energy of the 2\Delta
peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure
- …
