51 research outputs found

    (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 25527, doi:10.1038/srep25527.Despite having serious clinical manifestations, Cellulosimicrobium cellulans remain under-reported with only three genome sequences available at the time of writing. Genome sequences of C. cellulans LMG16121, C. cellulans J36 and Cellulosimicrobium sp. strain MM were used to determine distribution of pathogenicity islands (PAIs) across C. cellulans, which revealed 49 potential marker genes with known association to human infections, e.g. Fic and VbhA toxin-antitoxin system. Oligonucleotide composition-based analysis of orthologous proteins (n = 791) across three genomes revealed significant negative correlation (P < 0.05) between frequency of optimal codons (Fopt) and gene G+C content, highlighting the G+C-biased gene conversion (gBGC) effect across Cellulosimicrobium strains. Bayesian molecular-clock analysis performed on three virulent PAI proteins (Fic; D-alanyl-D-alanine-carboxypeptidase; transposase) dated the divergence event at 300 million years ago from the most common recent ancestor. Synteny-based annotation of hypothetical proteins highlighted gene transfers from non-pathogenic bacteria as a key factor in the evolution of PAIs. Additonally, deciphering the metagenomic islands using strain MM’s genome with environmental data from the site of isolation (hot-spring biofilm) revealed (an)aerobic respiration as population segregation factor across the in situ cohorts. Using reference genomes and metagenomic data, our results highlight the emergence and evolution of PAIs in the genus Cellulosimicrobium.The authors acknowledge funds from Department of Biotechnology (DBT) and National Bureau of Agriculturally Important Microorganisms (NBAIM). AS gratefully acknowledge National Bureau of Agriculturally Important Microorganisms (NBAIM) for providing research fellowship

    Microbiome profile associated with malignant pleural effusion.

    Get PDF
    INTRODUCTION:There is ongoing research into the development of novel molecular markers that may complement fluid cytology malignant pleural effusion (MPE) diagnosis. In this exploratory pilot study, we hypothesized that there are distinct differences in the pleural fluid microbiome profile of malignant and non-malignant pleural diseases. METHOD:From a prospectively enrolled pleural fluid biorepository, samples of MPE were included. Non-MPE effusion were included as comparators. 16S rRNA gene V4 region amplicon sequencing was performed. Exact Sequence Variants (ESVs) were used for diversity analyses. The Shannon and Richness indices of alpha diversity and UniFrac beta diversity measures were tested for significance using permutational multivariate analysis of variance. Analyses of Composition of Microbiome was used to identify differentially abundant bacterial ESVs between the groups controlled for multiple hypothesis testing. RESULTS:38 patients with MPE and 9 with non-MPE were included. A subgroup of patients with metastatic adenocarcinoma histology were identified among MPE group (adenocarcinoma of lung origin (LA-MPE) = 11, breast origin (BA-MPE) = 11). MPE presented with significantly greater alpha diversity compared to non-MPE group. Within the MPE group, BA-MPE was more diverse compared to LA-MPE group. In multivariable analysis, ESVs belonging to family S24-7 and genera Allobaculum, Stenotrophomonas, and Epulopiscium were significantly enriched in the malignant group compared to the non-malignant group. CONCLUSION:Our results are the first to demonstrate a microbiome signature according to MPE and non-MPE. The role of microbiome in pleural effusion pathogenesis needs further exploration

    Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates

    Get PDF
    Metagenomic DNA extracted from polluted as well as control soil sample and electrophoresed on 0.8 % agarosa gel. Lane M is of marker, Lane 1, is for polluted sample (representing pooled metagenomic DNA for P1 + P2 + P3 = P) and Lane 2 is for control soil sample (representing pooled metagenomic DNA for C1 + C2 + C3 = C). Figure S2. Distribution of taxa among bacteria at rank phylum classified according to 16S rDNA using RDP classifier for both polluted as well as control sample. Figure S3. Distribution of taxa among bacteria at rank phylum classified according to lowest common ancestor (LCA) for both polluted as well as control sample. Figure S4. Comparative distribution of taxa among bacteria at rank class classified according to WebCARMA and M5NR datasets for both polluted as well as control sample. Table S1. Enzymes mapped for lipid metabolism pathways in KEEG database. (DOC 300 kb

    Bacterial and Archaeal Viruses of Himalayan Hot Springs at Manikaran Modulate Host Genomes

    Get PDF
    Hot spring-associated viruses, particularly the archaeal viruses, remain under-examined compared to bacteriophages. Previous metagenomic studies of the Manikaran hot springs in India suggested an abundance of viral DNA, which prompted us to examine the virus–host (bacterial and archaeal) interactions in sediment and microbial mat samples collected from the thermal discharges. Here, we characterize the viruses (both bacterial and archaeal) from this Himalayan hot spring using both metagenomics assembly and electron microscopy. We utilized four shotgun samples from sediment (78–98°C) and two from microbial mats (50°C) to reconstruct 65 bacteriophage genomes (24–200 kb). We also identified 59 archaeal viruses that were notably abundant across the sediment samples. Whole-genome analyses of the reconstructed bacteriophage genomes revealed greater genomic conservation in sediments (65%) compared to microbial mats (49%). However, a minimal phage genome was still maintained across both sediment and microbial mats suggesting a common origin. To complement the metagenomic data, scanning-electron and helium-ion microscopy were used to reveal diverse morphotypes of Caudovirales and archaeal viruses. The genome level annotations provide further evidence for gene-level exchange between virus and host in these hot springs, and augments our knowledgebase for bacteriophages, archaeal viruses and Clustered Regularly Interspaced Short Palindromic Repeat cassettes, which provide a critical resource for studying viromes in extreme natural environments

    Enhanced Photocatalytic Degradation of the Imidazolinone Herbicide Imazapyr upon UV/Vis Irradiation in the Presence of CaxMnOy-TiO2 Hetero-Nanostructures: Degradation Pathways and Reaction Intermediates

    Get PDF
    [Abstract] The determination of reaction pathways and identification of products of pollutants degradation is central to photocatalytic environmental remediation. This work focuses on the photocatalytic degradation of the herbicide Imazapyr (2-(4-methyl-5-oxo-4-propan-2-yl-1H-imidazol-2-yl) pyridine-3-carboxylic acid) under UV-Vis and visible-only irradiation of aqueous suspensions of CaᵪMnOᵧ-TiO₂, and on the identification of the corresponding degradation pathways and reaction intermediates. CaᵪMnOᵧ-TiO₂ was formed by mixing CaᵪMnOᵧ and TiO₂ by mechanical grinding followed by annealing at 500 °C. A complete structural characterization of CaᵪMnOᵧ-TiO₂ was carried out. The photocatalytic activity of the hetero-nanostructures was determined using phenol and Imazapyr herbicide as model pollutants in a stirred tank reactor under UV-Vis and visible-only irradiation. Using equivalent loadings, CaᵪMnOᵧ-TiO₂ showed a higher rate (10.6 μM·h⁻¹) as compared to unmodified TiO₂ (7.4 μM·h⁻¹) for Imazapyr degradation under UV-Vis irradiation. The mineralization rate was 4.07 μM·h⁻¹ for CaᵪMnOᵧ-TiO₂ and 1.21 μM·h⁻¹ for TiO₂. In the CaᵪMnOᵧ-TiO₂ system, the concentration of intermediate products reached a maximum at 180 min of irradiation that then decreased to a half in 120 min. For unmodified TiO₂, the intermediates continuously increased with irradiation time with no decrease observed in their concentration. The enhanced efficiency of the CaᵪMnOᵧ-TiO₂ for the complete degradation of the Imazapyr and intermediates is attributed to an increased adsorption of polar species on the surface of CaᵪMnOᵧ. Based on LC-MS, photocatalytic degradation pathways for Imazapyr under UV-Vis irradiation have been proposed. Some photocatalytic degradation was obtained under visible-only irradiation for CaᵪMnOᵧ-TiO₂. Hydroxyl radicals were found to be main reactive oxygen species responsible for the photocatalytic degradation through radical scavenger investigations.This research received external funding from the British Council under the STREAM-MENA Institutional Links Scheme Grant number 278072873. This is a collaboration between Ulster University (UK), Technion Institute (Israel) and Rabat University (Morocco). MC acknowledges support from Ministerio de Economía y Competitividad (Spain) through project CTQ2015-71238-R (MINECO/FEDER). AS would like to acknowledge the financial support received from Ulster University (UK) through the VCRS scholarship. PS would like to acknowledge funding from Invest Northern Ireland for the BioDevices projectBritish Council; 27807287
    corecore