156 research outputs found

    Federal Evidence Rule 608(b): Gateway to the Minefield of Witness Preparation

    Get PDF

    Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    Get PDF
    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics

    A Taxonomy of Causality-Based Biological Properties

    Get PDF
    We formally characterize a set of causality-based properties of metabolic networks. This set of properties aims at making precise several notions on the production of metabolites, which are familiar in the biologists' terminology. From a theoretical point of view, biochemical reactions are abstractly represented as causal implications and the produced metabolites as causal consequences of the implication representing the corresponding reaction. The fact that a reactant is produced is represented by means of the chain of reactions that have made it exist. Such representation abstracts away from quantities, stoichiometric and thermodynamic parameters and constitutes the basis for the characterization of our properties. Moreover, we propose an effective method for verifying our properties based on an abstract model of system dynamics. This consists of a new abstract semantics for the system seen as a concurrent network and expressed using the Chemical Ground Form calculus. We illustrate an application of this framework to a portion of a real metabolic pathway

    Mathematical modeling of postmenopausal osteoporosis and its treatment by the anti-catabolic drug denosumab

    Get PDF
    Denosumab, a fully human monoclonal antibody, has been approved for the treatment of postmenopausal osteoporosis. The therapeutic effect of denosumab rests on its ability to inhibit osteoclast differentiation. Here, we present a computational approach on the basis of coupling a pharmacokinetics model of denosumab with a pharmacodynamics model for quantifying the effect of denosumab on bone remodeling. The pharmacodynamics model comprises an integrated systems biology-continuum micromechanics approach, including a bone cell population model, considering the governing biochemical factors of bone remodeling (including the action of denosumab), and a multiscale micromechanics-based bone mechanics model, for implementing the mechanobiology of bone remodeling in our model. Numerical studies of postmenopausal osteoporosis show that denosumab suppresses osteoclast differentiation, thus strongly curtailing bone resorption. Simulation results also suggest that denosumab may trigger a short-term bone volume gain, which is, however, followed by constant or decreasing bone volume. This evolution is accompanied by a dramatic decrease of the bone turnover rate by more than one order of magnitude. The latter proposes dominant occurrence of secondary mineralization (which is not anymore impeded through cellular activity), leading to higher mineral concentration per bone volume. This explains the overall higher bone mineral density observed in denosumab-related clinical studies

    Application of the Convection–Dispersion Equation to Modelling Oral Drug Absorption

    Get PDF
    Models of systemic drug absorption after oral administration are frequently based on a direct or a delayed first-order rate process. In practice, the use of the first-order approach to predict drug concentrations in blood plasma frequently yields a considerable mismatch between predicted and measured concentration profiles. This is particularly true for the upswing of the plasma concentration after oral administration. The current investigation explores an alternative model to describe the absorption rate based on the convection–dispersion equation describing the transport of chemicals through the GI tract. This equation is governed by two parameters, transport velocity and dispersion coefficient. One solution of this equation for a specific set of initial and boundary conditions was used to model absorption of paracetamol in a 22-year-old man after oral administration. The GI-tract passage rate in this subject was influenced by co-administration of drugs that stimulate or delay gastric emptying. The transport-limited absorption function is more accurate in describing the plasma concentration versus time curve after oral administration than the first-order model. Additionally, it provides a mechanistic explanation for the observed curve through the differences in GI-tract passage rate
    corecore