28,326 research outputs found
Spin-orbit correlation energy in neutron matter
We study the relevance of the energy correlation produced by the two-body
spin-orbit coupling present in realistic nucleon-nucleon potentials. To this
purpose, the neutron matter Equation of State (EoS) is calculated with the
realistic two-body Argonne potential. The shift occuring in the EoS when
spin-orbit terms are removed is taken as an estimate of the spin-orbit
correlation energy. Results obtained within the Bethe-Brueckner-Goldstone
expansion, extended up to three hole-line diagrams, are compared with other
many-body calculations recently presented in the literature. In particular,
excellent agreement is found with the Green's function Monte-Carlo method. This
agreement indicates the present theoretical accuracy in the calculation of the
neutron matter EoS.Comment: 5 pages, 2 figures, 2 tables; to appear in Phys. Rev.
Glaciological and volcanological studies in the Wrangell Mountains, Alaska
There are no author-identified significant results in this report
Piecewise adiabatic population transfer in a molecule via a wave packet
We propose a class of schemes for robust population transfer between quantum
states that utilize trains of coherent pulses and represent a generalized
adiabatic passage via a wave packet. We study piecewise Stimulated Raman
Adiabatic Passage with pulse-to-pulse amplitude variation, and piecewise
chirped Raman passage with pulse-to-pulse phase variation, implemented with an
optical frequency comb. In the context of production of ultracold ground-state
molecules, we show that with almost no knowledge of the excited potential,
robust high-efficiency transfer is possibleComment: 4 pages, 5 figures. Submitted to Phys. Rev. Let
Neutron matter at low density and the unitary limit
Neutron matter at low density is studied within the hole-line expansion.
Calculations are performed in the range of Fermi momentum between 0.4 and
0.8 fm. It is found that the Equation of State is determined by the
channel only, the three-body forces contribution is quite small, the
effect of the single particle potential is negligible and the three hole-line
contribution is below 5% of the total energy and indeed vanishing small at the
lowest densities. Despite the unitary limit is actually never reached, the
total energy stays very close to one half of the free gas value throughout the
considered density range. A rank one separable representation of the bare NN
interaction, which reproduces the physical scattering length and effective
range, gives results almost indistinguishable from the full Brueckner G-matrix
calculations with a realistic force. The extension of the calculations below
fm does not indicate any pathological behavior of the
neutron Equation of State.Comment: 17 pages, 7 figures. To be published in Phys. Rev.
Galaxy rotation curves from General Relativity with Renormalization Group corrections
We consider the application of quantum corrections computed using
renormalization group arguments in the astrophysical domain and show that, for
the most natural interpretation of the renormalization group scale parameter, a
gravitational coupling parameter varying of its value across a
galaxy (which is roughly a variation of per light-year) is
sufficient to generate galaxy rotation curves in agreement with the
observations. The quality of the resulting fit is similar to the Isothermal
profile quality once both the shape of the rotation curve and the mass-to-light
ratios are considered for evaluation. In order to perform the analysis, we use
recent high quality data from nine regular disk galaxies. For the sake of
comparison, the same set of data is modeled also for the Modified Newtonian
Dynamics (MOND) and for the recently proposed Scalar Tensor Vector Gravity
(STVG). At face value, the model based on quantum corrections clearly leads to
better fits than these two alternative theories.Comment: 35 pages, 12 PDF figures. v4: Version accepted in JCAP. Improved
comments on the galactic gas effects to our model, stressed the relevance of
our MOND and STVG fits, slightly extended discussion on our perspectives and
minor additional comments. Ref's added
Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields
We investigate medium effects due to density-dependent magnetic moments of
baryons on neutron stars under strong magnetic fields. If we allow the
variation of anomalous magnetic moments (AMMs) of baryons in dense matter under
strong magnetic fields, AMMs of nucleons are enhanced to be larger than those
of hyperons. The enhancement naturally affects the chemical potentials of
baryons to be large and leads to the increase of a proton fraction.
Consequently, it causes the suppression of hyperons, resulting in the stiffness
of the equation of state. Under the presumed strong magnetic fields, we
evaluate relevant particles' population, the equation of state and the maximum
masses of neutron stars by including density-dependent AMMs and compare them
with those obtained from AMMs in free space
Color superconducting matter in a magnetic field
We investigate the effect of a magnetic field on cold dense three-flavor
quark matter using an effective model with four-Fermi interactions with
electric and color neutrality taken into account. The gap parameters Delta_1,
Delta_2, and Delta_3 representing respectively the predominant pairing between
down and strange (d-s) quarks, strange and up (s-u) quarks, and up and down
(u-d) quarks, show the de Haas-van Alphen effect, i.e. oscillatory behavior as
a function of the modified magnetic field B that can penetrate the color
superconducting medium. Without applying electric and color neutrality we find
Delta_2 \approx Delta_3 >> Delta_1 for 2 e B / mu_q^2, where e is the modified
electromagnetic coupling constant and mu_q is one third of the baryon chemical
potential. Because the average Fermi surface for each pairing is affected by
taking into account neutrality, the gap structure changes drastically in this
case; we find Delta_1 >> Delta_2 \approx Delta_3 for 2 e B > mu_q^2. We point
out that the magnetic fields as strong as presumably existing inside magnetars
might induce significant deviations from the gap structure Delta_1 \approx
Delta_2 \approx Delta_3 at zero magnetic field.Comment: 5 pages, 3 figure
3D simulations of the accretion process in Kerr space-time with arbitrary value of the spin parameter
We present the results of three-dimensional general relativistic hydrodynamic
simulations of adiabatic and spherically symmetric accretion in Kerr
space-time. We consider compact objects with spin parameter
(black holes) and with (super-spinars). Our full three-dimensional
simulations confirm the formation of equatorial outflows for high values of
, as found in our previous work in 2.5 dimensions. We show that the
critical value of determining the onset of powerful outflows depends
mainly on the radius of the compact object. The phenomenon of equatorial
outflows can hardly occur around a black hole and may thus be used to test the
bound for astrophysical black hole candidates.Comment: 13 pages, 9 figures. v2: refereed versio
Magnetic fields generated by r-modes in accreting millisecond pulsars
In millisecond pulsars the existence of the Coriolis force allows the
development of the so-called Rossby oscillations (r-modes) which are know to be
unstable to emission of gravitational waves. These instabilities are mainly
damped by the viscosity of the star or by the existence of a strong magnetic
field. A fraction of the observed millisecond pulsars are known to be inside
Low Mass X-ray Binaries (LMXBs), systems in which a neutron star (or a black
hole) is accreting from a donor whose mass is smaller than 1 . Here we
show that the r-mode instabilities can generate strong toroidal magnetic fields
by inducing differential rotation. In this way we also provide an alternative
scenario for the origin of the magnetars.Comment: 6 pages, 3 figures, Proceedings conference "Theoretical Nuclear
Physics", Cortona October 200
Complete transfer of populations from a single state to a pre-selected superposition of states using Piecewise Adiabatic Passage
We develop a method for executing robust and selective transfer of
populations between a single level and pre-selected superpositions of energy
eigenstates. Viewed in the frequency domain, our method amounts to executing a
series of simultaneous adiabatic passages into each component of the target
superposition state. Viewed in {the} time domain, the method works by
accumulating the wavefunction of the target wave packet as it revisits the
Franck Condon region, in what amounts to an extension of the Piecewise
Adiabatic Passage technique [ Shapiro et.al., Phys. Rev. Lett. 99, 033002
(2007)] to the multi-state regime. The viability of the method is verified by
performing numerical tests for the Na_2 molecule.Comment: 8 pages, 4 figure
- …