608 research outputs found

    Boundedness, compactness and Schatten-class membership of weighted composition operators

    Full text link
    The boundedness and compactness of weighted composition operators on the Hardy space H2{\mathcal H}^2 of the unit disc is analysed. Particular reference is made to the case when the self-map of the disc is an inner function. Schatten-class membership is also considered; as a result, stronger forms of the two main results of a recent paper of Gunatillake are derived. Finally, weighted composition operators on weighted Bergman spaces A2α(D)\mathcal{A}^2 \alpha(\mathbb{D}) are considered, and the results of Harper and Smith, linking their properties to those of Carleson embeddings, are extended to this situation.Comment: 12 page

    Challenges of open innovation: the paradox of firm investment in open-source software

    Get PDF
    Open innovation is a powerful framework encompassing the generation, capture, and employment of intellectual property at the firm level. We identify three fundamental challenges for firms in applying the concept of open innovation: finding creative ways to exploit internal innovation, incorporating external innovation into internal development, and motivating outsiders to supply an ongoing stream of external innovations. This latter challenge involves a paradox, why would firms spend money on R&D efforts if the results of these efforts are available to rival firms? To explore these challenges, we examine the activity of firms in opensource software to support their innovation strategies. Firms involved in open-source software often make investments that will be shared with real and potential rivals. We identify four strategies firms employ – pooled R&D/product development, spinouts, selling complements and attracting donated complements – and discuss how they address the three key challenges of open innovation. We conclude with suggestions for how similar strategies may apply in other industries and offer some possible avenues for future research on open innovation

    Supernovae, Hypernovae and Color Superconductivity

    Get PDF
    We argue that Color Superconductivity (CSC, Cooper pairing in quark matter leading to the breaking of SU(3) color symmetry) may play a role in triggering the explosive endpoint of stellar evolution in massive stars (M > 8 M_{\odot}). We show that the binding energy release in the transition of a sub-core region to the CSC phase can be of the same order of magnitude as the gravitational binding energy release from core collapse. The core temperature during collapse is likely below the critical temperature for CSC, and the transition is first order, proceeding on Fermi timescales when the pressure reaches a critical value of several times nuclear density. We also discuss the implications for hypernova events with total ejecta energy of 10-100 times that of type II supernova.Comment: 8 pages, LaTe

    Weak lensing, dark matter and dark energy

    Full text link
    Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.Comment: Invited review article for the GRG special issue on gravitational lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on three-point function and some references added. Matches the published versio

    Astrophysical structures from primordial quantum black holes

    Full text link
    The characteristic sizes of astrophysical structures, up to the whole observed Universe, can be recovered, in principle, assuming that gravity is the overall interaction assembling systems starting from microscopic scales, whose order of magnitude is ruled by the Planck length and the related Compton wavelength. This result agrees with the absence of screening mechanisms for the gravitational interaction and could be connected to the presence of Yukawa corrections in the Newtonian potential which introduce typical interaction lengths. This result directly comes out from quantization of primordial black holes and then characteristic interaction lengths directly emerge from quantum field theory.Comment: 11 page

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change
    corecore