293 research outputs found
Microsleep Episodes, Attention Lapses and Circadian Variation in Psychomotor Performance in a Driving Simulation Paradigm
Numerous studies document circadian changes in sleepiness, with biphasic peaks in the early morning and late afternoon. Driving performance has also been demonstrated to be subject to time-of-day variation. This study investigated circadian variation in driving performance, attention lapses (AL) and/or frequency of microsleep (MS) episodes across the day. Sixteen healthy adults with valid driver’s licenses participated in the study. Using the York Driving Simulator, subjects performed four intentionally soporific 30-minute driving simulations at two-hour intervals (i.e., at 10:00, 12:00, 14:00, and 16:00). During each session, individuals had EEG monitoring for MS episodes (defined as 15 to 30 seconds of any sleep stage by polysomnographic criteria) and AL episodes (defined as intrusion of alpha- or theta-EEG activity lasting 4-14 seconds). Measured variables included: lane accuracy, average speed, speed deviation, mean reaction time (RT) to “virtual” wind gusts and off-road events. Mean values of each variable at every time were analyzed using a general linear model and paired sample t-tests. RT displayed significant within-group variation, with paired samples tests at df=15 showing RT at 10:00 significantly faster than at other times of the day, but no significant within-group variation between other times of the day. All other variables and EEG-defined AL episodes failed to exhibit any statistically significant variation across the day. However, MS episodes were found to occur more often at 16:00 in comparison to all other times. As RT was optimal before noon, it appears that psychomotor performance and therefore driving ability is subject to circadian variation. Coincident with the demonstrated circadian pattern of diminished alertness, this may partially explain the high incidence of motor vehicle accidents during the mid- to late-afternoon. By better understanding circadian fluctuations in driver sleepiness and psychomotor performance, human performance researchers may be in a position to better educate the public about cautionary measures to prevent accidents
Recommended from our members
A novel NGS library preparation method to characterize native termini of fragmented DNA.
Biological and chemical DNA fragmentation generates DNA molecules with a variety of termini, including blunt ends and single-stranded overhangs. We have developed a Next Generation Sequencing (NGS) assay, XACTLY, to interrogate the termini of fragmented DNA, information traditionally lost in standard NGS library preparation methods. Here we describe the XACTLY method, showcase its sensitivity and specificity, and demonstrate its utility in in vitro experiments. The XACTLY assay is able to report relative abundances of all lengths and types (5' and 3') of single-stranded overhangs, if present, on each DNA fragment with an overall accuracy between 80-90%. In addition, XACTLY retains the sequence of each native DNA molecule after fragmentation and can capture the genomic landscape of cleavage events at single nucleotide resolution. The XACTLY assay can be applied as a novel research and discovery tool for fragmentation analyses and in cell-free DNA
Simulator Performance vs. Neurophysiologic Monitoring: Which is More Relevant to Assess Driving Impairment?
Previously, we reported on circadian variation in driving simulator performance and neurophysiologic evidence of sleep intrusion into consciousness in a pilot study of healthy individuals. We have since expanded this “normative” sample and run a prospective comparison study with a sample of clinical patients reporting excessive daytime sleepiness (EDS) as a chief complaint. Thirty healthy adults (mean age of 31.3 ± 11.5) and 27 EDS patients (47.0 ± 13.7) with valid driver’s licenses were included. Subjects performed four intentionally soporific 30-minute driving simulations at two-hour intervals while undergoing continuous EEG monitoring for microsleep (MS) episodes. Measured variables included: subjective ratings of sleepiness and alertness prior to each drive, lane position accuracy, mean speed, speed deviation, mean reaction time (RT) to “virtual” wind gusts as well as off-road events, i.e., “crashes.” In comparing normative individuals and EDS patients, significant between-group differences were found between subjective ratings, RT, crashes and MS. Both groups showed a significant a tendency towards RT slowing during afternoon drives, with this circadian effect appearing most pronounced for EDS patients. Significant between-group differences were also found on subjective ratings of sleepiness and alertness, although diurnal fluctuation of subjective sleepiness ratings was significant only for the EDS group. Objective EEG MS monitoring demonstrated escalating sleep intrusion with repeated drives in both groups, but particularly for the EDS group. Total crash rates were three times higher in EDS patients, with an increasing trend towards crash-proneness in the late afternoon. In summary, we found significantly impaired performance on some, though not all, driving parameters for EDS patients. While increased crash rate may be the most dramatic of these, slowing of RT was the most statistically robust. EEG monitoring was able to document increased propensity towards MS episodes in patients with EDS, which we suggest is causative in creating this impairment. It remains unclear whether a neurophysiologic or simulator approach captures impairment due to sleepiness with greater sensitivity and specificity. A hybrid approach combining data from both sources may be optimal, and also could be integrated in commercial vehicle use. We suggest that the need for a more accurate hospitalbased screening tool for assessment of driving impairment due to sleep disorders remains an important issue for physicians and legislators dealing with driving competency
Draft genome sequences of gammaproteobacterial methanotrophs isolated from marine ecosystems
The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems
Chaos and Quantum Thermalization
We show that a bounded, isolated quantum system of many particles in a
specific initial state will approach thermal equilibrium if the energy
eigenfunctions which are superposed to form that state obey {\it Berry's
conjecture}. Berry's conjecture is expected to hold only if the corresponding
classical system is chaotic, and essentially states that the energy
eigenfunctions behave as if they were gaussian random variables. We review the
existing evidence, and show that previously neglected effects substantially
strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas
as an explicit example of a many-body system which is known to be classically
chaotic, and show that an energy eigenstate which obeys Berry's conjecture
predicts a Maxwell--Boltzmann, Bose--Einstein, or Fermi--Dirac distribution for
the momentum of each constituent particle, depending on whether the wave
functions are taken to be nonsymmetric, completely symmetric, or completely
antisymmetric functions of the positions of the particles. We call this
phenomenon {\it eigenstate thermalization}. We show that a generic initial
state will approach thermal equilibrium at least as fast as
, where is the uncertainty in the total energy
of the gas. This result holds for an individual initial state; in contrast to
the classical theory, no averaging over an ensemble of initial states is
needed. We argue that these results constitute a new foundation for quantum
statistical mechanics.Comment: 28 pages in Plain TeX plus 2 uuencoded PS figures (included); minor
corrections only, this version will be published in Phys. Rev. E;
UCSB-TH-94-1
Recommended from our members
A genome assembly of the American black bear, Ursus americanus, from California
The American black bear, Ursus americanus, is a widespread and ecologically important species in North America. In California, the black bear plays an important role in a variety of ecosystems and serves as an important species for recreational hunting. While research suggests that the populations in California are currently healthy, continued monitoring is critical, with genomic analyses providing an important surveillance tool. Here we report a high-quality, near chromosome-level genome assembly from a U. americanus sample from California. The primary assembly has a total length of 2.5 Gb contained in 316 scaffolds, a contig N50 of 58.9 Mb, a scaffold N50 of 67.6 Mb, and a BUSCO completeness score of 96%. This U. americanus genome assembly will provide an important resource for the targeted management of black bear populations in California, with the goal of achieving an appropriate balance between the recreational value of black bears and the maintenance of viable populations. The high quality of this genome assembly will also make it a valuable resource for comparative genomic analyses among black bear populations and among bear species
Correlative analysis of structure and chemistry of LixFePO4 platelets using 4D-STEM and X-ray ptychography
Lithium iron phosphate (LixFePO4), a cathode material used in rechargeable
Li-ion batteries, phase separates upon de/lithiation under equilibrium. The
interfacial structure and chemistry within these cathode materials affects
Li-ion transport, and therefore battery performance. Correlative imaging of
LixFePO4 was performed using four-dimensional scanning transmission electron
microscopy (4D-STEM), scanning transmission X-ray microscopy (STXM), and X-ray
ptychography in order to analyze the local structure and chemistry of the same
particle set. Over 50,000 diffraction patterns from 10 particles provided
measurements of both structure and chemistry at a nanoscale spatial resolution
(16.6-49.5 nm) over wide (several micron) fields-of-view with statistical
robustness.LixFePO4 particles at varying stages of delithiation were measured
to examine the evolution of structure and chemistry as a function of
delithiation. In lithiated and delithiated particles, local variations were
observed in the degree of lithiation even while local lattice structures
remained comparatively constant, and calculation of linear coefficients of
chemical expansion suggest pinning of the lattice structures in these
populations. Partially delithiated particles displayed broadly core-shell-like
structures, however, with highly variable behavior both locally and per
individual particle that exhibited distinctive intermediate regions at the
interface between phases, and pockets within the lithiated core that correspond
to FePO4 in structure and chemistry.The results provide insight into the
LixFePO4 system, subtleties in the scope and applicability of Vegards law
(linear lattice parameter-composition behavior) under local versus global
measurements, and demonstrate a powerful new combination of experimental and
analytical modalities for bridging the crucial gap between local and
statistical characterization.Comment: 17 pages, 4 figure
Density profiles of dark matter haloes: diversity and dependence on environment
(Abridged) We study the outer density profiles of dark matter haloes
predicted by a generalized secondary infall model and observed in a N-body
cosmological simulation of a \Lambda CDM model. We find substantial systematic
variations in shapes and concentrations of the halo profiles as well as a
strong correlation of the profiles with the environment. In the N-body
simulation, the average outer slope of the density profiles, \beta (\rho\propto
r^{-\beta}), of isolated haloes is \approx 2.9; 68% of these haloes have values
of \beta between 2.5 and 3.8. Haloes in dense environments of clusters are more
concentrated and exhibit a broad distribution of \beta with values larger than
for isolated haloes . Contrary to what one may expect, the haloes contained
within groups and galaxy systems are less concentrated and have flatter outer
density profiles than the isolated haloes. The concentration decreases with
M_h, but its scatter for a given mass is substantial. The mass and circular
velocity of the haloes are strongly correlated: M_h \propto V_m^{\alpha} with
\alpha ~ 3.3 (isolated) and ~3.5 (haloes in clusters). For M_h=10^12M_sun the
rms deviations from these relations are \Delta logM_h=0.12 and 0.18,
respectively. Approximately 30% of the haloes are contained within larger
haloes or have massive companions (larger than ~0.3 the mass of the current
halo) within 3 virial radii. The remaining 70% of the haloes are isolated
objects. The distribution of \beta as well as the concentration-mass and
M_h-V_m relations for the isolated haloes agree very well with the predictions
of our seminumerical approach which is based on a generalization of the
secondary infall model and on the extended Press-Schechter formalism.Comment: 14 pages, 11 figures included, uses mn.sty, accepted by MNRAS. Minor
modifications, new and updated reference
Draft Genome Sequences of Two Gammaproteobacterial Methanotrophs Isolated from Rice Ecosystems
The genomes of the aerobic methanotrophs “Methyloterricola oryzae” strain 73aT and Methylomagnum ishizawai strain 175 were sequenced. Both strains were isolated from rice plants. Methyloterricola oryzae strain 73aT represents the first isolate of rice paddy cluster I, and strain 175 is the second representative of the recently described genus Methylomagnum
Early High-Dose Vitamin D3 for Critically Ill, Vitamin D-Deficient Patients
BACKGROUND: Vitamin D deficiency is a common, potentially reversible contributor to morbidity and mortality among critically ill patients. The potential benefits of vitamin D supplementation in acute critical illness require further study.
METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial of early vitamin D3 supplementation in critically ill, vitamin D-deficient patients who were at high risk for death. Randomization occurred within 12 hours after the decision to admit the patient to an intensive care unit. Eligible patients received a single enteral dose of 540,000 IU of vitamin D3 or matched placebo. The primary end point was 90-day all-cause, all-location mortality.
RESULTS: A total of 1360 patients were found to be vitamin D-deficient during point-of-care screening and underwent randomization. Of these patients, 1078 had baseline vitamin D deficiency (25-hydroxyvitamin D level,[50 nmol per liter]) confirmed by subsequent testing and were included in the primary analysis population. The mean day 3 level of 25-hydroxyvitamin D was 46.9±23.2 ng per milliliter (117±58 nmol per liter) in the vitamin D group and 11.4±5.6 ng per milliliter (28±14 nmol per liter) in the placebo group (difference, 35.5 ng per milliliter; 95% confidence interval [CI], 31.5 to 39.6). The 90-day mortality was 23.5% in the vitamin D group (125 of 531 patients) and 20.6% in the placebo group (109 of 528 patients) (difference, 2.9 percentage points; 95% CI, -2.1 to 7.9; P = 0.26). There were no clinically important differences between the groups with respect to secondary clinical, physiological, or safety end points. The severity of vitamin D deficiency at baseline did not affect the association between the treatment assignment and mortality.
CONCLUSIONS: Early administration of high-dose enteral vitamin D3 did not provide an advantage over placebo with respect to 90-day mortality or other, nonfatal outcomes among critically ill, vitamin D-deficient patients.
METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial of early vitamin D3 supplementation in critically ill, vitamin D-deficient patients who were at high risk for death. Randomization occurred within 12 hours after the decision to admit the patient to an intensive care unit. Eligible patients received a single enteral dose of 540,000 IU of vitamin D3 or matched placebo. The primary end point was 90-day all-cause, all-location mortality
- …