42 research outputs found

    Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites:TL-LUE Parameterization and Validation

    Get PDF
    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR

    Serum Levels of FGF-21 Are Increased in Coronary Heart Disease Patients and Are Independently Associated with Adverse Lipid Profile

    Get PDF
    BACKGROUND: Fibroblast growth factor 21 (FGF-21) is a metabolic regulator with multiple beneficial effects on glucose homeostasis and lipid metabolism in animal models. The relationship between plasma levels of FGF-21 and coronary heart disease (CHD) in unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study aimed to investigate the correlation of serum FGF-21 levels and lipid metabolism in the patients with coronary heart disease. We performed a logistic regression analysis of the relation between serum levels of FGF-21 and CHD patients with and without diabetes and hypertension. This study was conducted in the Departments of Endocrinology and Cardiovascular Diseases at two University Hospitals. Participants consisted of one hundred and thirty-five patients who have been diagnosed to have CHD and sixty-one control subjects. Serum FGF-21 level and levels of fasting blood glucose; triglyceride; apolipoprotein B100; HOMA-IR; insulin; total cholesterol; HDL-cholesterol; LDL-cholesterol; and C-reactive protein were measured. We found that median serum FGF-21 levels were significantly higher in CHD than that of control subjects (P<0.0001). Serum FGF-21 levels in CHD patients with diabetes, hypertension, or both were higher than that of patients without these comorbidities. Serum FGF-21 levels correlated positively with triglycerides, fasting blood glucose, apolipoprotein B100, insulin and HOMA-IR but negatively with HDL-C and apolipoprotein A1 after adjusting for BMI, diabetes and hypertension. Logistic regression analysis demonstrated that FGF-21 showed an independent association with triglyceride and apolipoprotein A1. CONCLUSIONS/SIGNIFICANCE: High levels of FGF-21 are associated with adverse lipid profiles in CHD patients. The paradoxical increase of serum FGF-21 in CHD patients may indicate a compensatory response or resistance to FGF-21

    Circulating FGF21 Levels Are Progressively Increased from the Early to End Stages of Chronic Kidney Diseases and Are Associated with Renal Function in Chinese

    Get PDF
    Fibroblast growth factor 21 (FGF21) is a hepatic hormone involved in the regulation of lipid and carbohydrate metabolism. This study aims to test the hypothesis that elevated FGF21 concentrations are associated with the change of renal function and the presence of left ventricular hypertrophy (LVH) in the different stages of chronic kidney disease (CKD) progression.0.05).Plasma FGF21 levels are significantly increased with the development of early- to end-stage CKD and are independently associated with renal function and adverse lipid profiles in Chinese population. Understanding whether increased FGF21 is associated with myocardial hypertrophy in CKD requires further study

    A mathematical framework of the bridging scale method

    No full text
    In this paper, we present a mathematical framework of the bridging scale method (BSM), recently proposed by Liu et al. Under certain conditions, it had been designed for accurately and efficiently simulating complex dynamics with different spatial scales. From a clear and consistent derivation, we identify two error sources in this method. First, we use a linear finite element interpolation, and derive the coarse grid equations directly from Newton’s second law. Numerical error in this length scale exists mainly due to inadequate approximation for the effects of the fine scale fluctuations. An modified linear element (MLE) scheme is developed to improve the accuracy. Secondly, we derive an exact multiscale interfacial condition to treat the interfaces between the molecular dynamics region �D and the complementary domain �C, using a time history kernel technique. The interfacial condition proposed in the original BSM may be regarded as a leading order approximation to the exact one (with respect to the coarsening ratio). This approximation is responsible for minor reflections across the interfaces, with a dependency on the choice of �D. We further illustrate the framework and analysis with linear and non-linear lattices in one-dimensional space. Copyright � 2005 John Wiley &amp; Sons, Ltd. KEY WORDS: multiscale computation; bridging scale method; coarse–fine decomposition; molecula

    A pseudo-spectral multiscale method: Interfacial conditions and coarse grid equations

    No full text
    In this paper, we propose a pseudo-spectral multiscale method for simulating complex systems with more than one spatial scale. Using a spectral decomposition, we split the displacement into its mean and fluctuation parts. Under the assumption of localized nonlinear fluctuations, we separate the domain into an MD (Molecular Dynamics) subdomain and an MC (MacrosCopic) subdomain. An interfacial condition is proposed across the two scales, in terms of a time history treatment. In the special case of a linear system, this is the first exact interfacial condition for multiscale computations. Meanwhile, we design coarse grid equations using a matching differential operator approach. The coarse grid discretization is of spectral accuracy. We do not use a handshaking region in this method. Instead, we define a coarse grid over the whole domain and reassign the coarse grid displacement in the MD subdomain with an average of the MD solution. To reduce the computational cost, we compute the dynamics of the coarse grid displacement and relate it to the mean displacement. Our method is therefore called a pseudo-spectral multiscale method. It allows one to reach high resolution by balancing the accuracy at the coarse grid with that at the interface. Numerical experiments in one- and two-space dimensions are presented to demonstrate the accuracy and the robustness of the method
    corecore