388 research outputs found

    Merger Control Under China\u27s Anti-Monopoly Law

    Get PDF

    Merger Control Under China\u27s Anti-Monopoly Law

    Get PDF

    Sources Fostering Academic Well-Being: Students\u27 Perspectives In A PBL Context

    Get PDF
    In a post-pandemic learning era, student academic well-being emerges to the attention of educational researchers. Referring to students’ thoughts and behaviors that contribute to doing well in an educational context and their academic life satisfaction, student academic well-being has a significant influence on their recruitment and retention, learning experience, academic achievement, and competence development. However, while academic well-being has been regarded as an important indicator of student persistence in their current study and learning outcomes, limited studies have explored engineering students’ academic well-being and other supportive factors in engineering education. While several studies have examined how well-being is constituted and how it can be measured from medical, mental health, and eudaimonic philosophical perspectives, understanding engineering student academic well-being from social-cognitive and sociocultural aspects is also important. This is because wellbeing is not only influenced by personal feelings and perceptions, but also dynamically framed by interpersonal relations, as well as contextual and institutional conditions. To increase retention and help engineering students to become agentic professionals, it is desirable to help them to become proactive and purposeful learners in their studies. Thus, aimed at filling in this literature gap, this study will adopt the Q methodology to explore how engineering students perceive the sources contributing to their academic well-being in a Danish university. Suggestions will be proposed to optimize future curriculum design to support student academic well-bein

    Meta-evaluation of online and offline web search evaluation metrics

    Get PDF
    As in most information retrieval (IR) studies, evaluation plays an essential part in Web search research. Both offline and online evaluation metrics are adopted in measuring the performance of search engines. Offline metrics are usually based on relevance judgments of query-document pairs from assessors while online metrics exploit the user behavior data, such as clicks, collected from search engines to compare search algorithms. Although both types of IR evaluation metrics have achieved success, to what extent can they predict user satisfaction still remains under-investigated. To shed light on this research question, we meta-evaluate a series of existing online and offline metrics to study how well they infer actual search user satisfaction in different search scenarios. We find that both types of evaluation metrics significantly correlate with user satisfaction while they reflect satisfaction from different perspectives for different search tasks. Offline metrics better align with user satisfaction in homogeneous search (i.e. ten blue links) whereas online metrics outperform when vertical results are federated. Finally, we also propose to incorporate mouse hover information into existing online evaluation metrics, and empirically show that they better align with search user satisfaction than click-based online metrics

    Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters

    Get PDF
    Compared with conventional exoskeletons with rigid links, cable-driven upper-limb exoskeletons are light weight and have simple structures. However, cable-driven exoskeletons rely heavily on the human skeletal system for support. Kinematic modeling and control thus becomes very challenging due to inaccurate anthropomorphic parameters and flexible attachments. In this paper, the mechanical design of a cable-driven arm rehabilitation exoskeleton is proposed to accommodate human limbs of different sizes and shapes. A novel arm cuff able to adapt to the contours of human upper limbs is designed. This has given rise to an exoskeleton which reduces the uncertainties caused by instabilities between the exoskeleton and the human arm. A kinematic model of the exoskeleton is further developed by considering the inaccuracies of human-arm skeleton kinematics and attachment errors of the exoskeleton. A parameter identification method is used to improve the accuracy of the kinematic model. The developed kinematic model is finally tested with a primary experiment with an exoskeleton prototype

    Adaptive fuzzy sliding mode algorithm-based decentralised control for a permanent magnet spherical actuator

    Get PDF
    <p>The dynamic model of multi-degree-of-freedom permanent magnet (PM) spherical actuators is multivariate and nonlinear due to strong inter-axis couplings, which affects the trajectory tracking performance of the system. In this paper, a decentralised control strategy based on adaptive fuzzy sliding mode (AFSM) algorithm is developed for a PM spherical actuator to enhance its trajectory tracking performance. In this algorithm, the coupling terms are separated as subsystems from the entire system. The AFSM algorithm is applied in such a way that the fuzzy logic systems are used to approximate the subsystem with uncertainties. A sliding mode term is introduced to compensate for the effect of coupling terms and fuzzy approximation error. The stability of the proposed method is guaranteed by choosing the appropriate Lyapunov function. Both simulation and experimental results show that the proposed control algorithm can effectively handle various uncertainties and inter-axis couplings, and improve the trajectory tracking precision of the spherical actuator.</p

    Performance Degradation Based on Importance Change and Application in Dissimilar Redundancy Actuation System

    Get PDF
    The importance measure is a crucial method to identify and evaluate the system weak link. It is widely used in the optimization design and maintenance decision of aviation, aerospace, nuclear energy and other systems. The dissimilar redundancy actuation system (DRAS) is a key aircraft control subsystem which performs aircraft attitude and flight trajectory control. Its performance and reliability directly affect the aircraft flight quality and flight safety. This paper considers the influence of the Birnbaum importance measure (BIM) and integrated importance measure (IIM) on the reliability changes of key components in DRAS. The differences of physical fault characteristics of different components due to performance degradation and power mismatch, are first considered. The reliability of each component in the system is then estimated by assuming that the stochastic degradation process of the DRAS components follows an inverse Gaussian (IG) process. Finally, the weak links of the system are identified using BIM and IIM, so that the resources can be reasonably allocated to the weak links during the maintenance period. The proposed method can provide a technical support for personnel maintenance, in order to improve the system reliability with a minimal lifecycle cost

    Reliability Estimation of Reciprocating Seals Based on Multivariate Dependence Analysis and It\u27s Experimental Validation

    Get PDF
    Accurate reliability estimation for reciprocating seals is of great significance due to their wide use in numerous engineering applications. This work proposes a reliability estimation method for reciprocating seals based on multivariate dependence analysis of different performance indicators. Degradation behavior corresponding to each performance indicator is first described by the Wiener process. Dependence among different performance indicators is then captured using D-vine copula, and a weight-based copula selection method is utilized to determine the optimal bivariate copula for each dependence relationship. A two-stage Bayesian method is used to estimate the parameters in the proposed model. Finally, a reciprocating seal degradation test is conducted, and the proposed reliability estimation approach is validated by test data. Results show that the proposed model is accurate and effective in estimating the reliability of reciprocating seals
    • …
    corecore