122 research outputs found

    Application of Artificial Fish Swarm Algorithm in Radial Basis Function Neural Network

    Get PDF
    Neural network is one of the branches with the most active research, development and application in computational intelligence and machine study. Radial basis function neural network (RBFNN) has achieved some success in more than one application field, especially in pattern recognition and functional approximation. Due to its simple structure, fast training speed and excellent generalization ability, it has been widely used. Artificial fish swarm algorithm (AFSA) is a new swarm intelligent optimization algorithm derived from the study on the preying behavior of fish swarm. This algorithm is not sensitive to the initial value and the parameter selection, but strong in robustness and simple and easy to realize and it also has parallel processing capability and global searching ability. This paper mainly researches the weight and threshold of AFSA in optimizing RBFNN. The simulation experiment proves that AFSA-RBFNN is significantly advantageous in global optimization capability and that it has outstanding global optimization ability and stability

    Fatigue reliability assessment of small sample excavator working devices based on Bootstrap method

    Get PDF
    To evaluate the fatigue reliability of the excavator working device, the fatigue tests of 2 sets of moving arm and bucket rod of medium-sized excavators with self-weight of 26000 kg were carried out. The virtual augmented sample method (VASM) combined with Bootstrap method was used to analyze the reliability of the excavator working device under extreme small samples, and the interval and point estimations of life parameters were obtained. Based on the lognormal distribution of the excavator working device, the reliability evaluation model of the excavator working device was esTablelished, and reliability indexes, such as reliability function, failure distribution function, inefficiency function, reliable life and so on, were obtained. And the results of fatigue safety life under different confidence and reliability were calculated. The evaluation results show that the average failure time of the excavator working device is 5885 hours under the confidence of 75%, which provides an important reference for the design, the safety inspection and maintenance decision of the excavator working device

    Morphological Redescription and Morphogenesis of Urosoma macrostyla (Wrześniowski, 1866) Berger, 1999 (Ciliophora, Hypotrichida)

    Get PDF
    The morphology and morphogenesis of the hypotrich ciliate Urosoma macrostyla (Wrześniowski, 1866) Berger, 1999, collected from a puddle in Harbin, China, were investigated using live observation and protargol impregnation. Based on previous and present studies, an improved diagnosis of U. macrostyla is supplied. It differs from its congeners mainly by the body shape, no cortical granules and number of macronuclear nodules. The ontogenesis of U. macrostyla is typical for species with such a somatic ciliary pattern: the oral primordium develops hypoapokinetally and FVT-anlagen develop in 5-streaks and primary mode. However, a unique characteristic in morphogenetic process is reported: anlagen for both the left and right marginal cirri occur de novo to the right of the parental structure which has never been seen in other oxytrichids. This characteristic was considered an apomorphy (Berger 1999). This indicates that U. macrostyla possibly has a high phylogenetic position within the genus Urosoma, or perhaps it represents a distinct subgenus

    Water isotope technology application for sustainable eco-environmental construction: Effects of landscape characteristics on water yield in the alpine headwater catchments of Tibetan Plateau for sustainable eco-environmental construction

    Get PDF
    Topography-climate-vegetation-runoff relationships are important issues in hydrological studies. In this paper, based on analyzing water isotope characteristics of river water, the influence of these variables on the relative contribution of rain to river water was investigated during one rain event in the Heishui Valley of the upper Yangtze River in China. During one rain event on August 19, 2005, a total number of 182 river water samples were collected at 13 sampling sites located along the principal river course and its tributaries. The analysis of water isotopes in the principal river course and its tributaries showed that new rain water and secondary evaporation precipitation caused great variation in values of delta D and high d-excess increased with altitude. Based on calculations of two-component hydrograph separation using delta O-18, the results showed that the biggest relative contribution of new rain to river water (43%) was found in tributary B, while the smallest contribution (less than 5%) was found in tributary I. According to stepwise linear regression analysis, topography (elevation and slope) was the most important factor affecting the contributions of new rain to river water. When only vegetation variables were considered in the regression model, alpine shrub coverage proved to be negatively correlated with the contributions of new rain to river water, while alpine meadow coverage was positively correlated with the contributions of new rain. This would imply that increasing the relative coverage of alpine shrubs in this mountainous region of China may decrease the risk of flooding. (C) 2014 Elsevier B.V. All rights reserved

    Decreased Information Replacement of Working Memory After Sleep Deprivation: Evidence From an Event-Related Potential Study

    Get PDF
    Working memory (WM) components are altered after total sleep deprivation (TSD), both with respect to information replacement and result judgment. However, the electrophysiological mechanisms of WM alterations following sleep restriction remain largely unknown. To identify such mechanisms, event-related potentials were recorded during the n-back WM task, before and after 36 h sleep deprivation. Thirty-one young volunteers participated in this study and performed a two-back WM task with simultaneous electroencephalography (EEG) recording before and after TSD and after 8 h time in bed for recovery (TIBR). Repeated measures analysis of variance revealed that, compared to resting wakefulness, sleep deprivation induced a decrease in the P200 amplitude and induced longer reaction times. ERP-component scalp topographies results indicated that such decrease primarily occurred in the frontal cortex. The N200 and P300 amplitudes also decreased after TSD. Our results suggest that decreased information replacement of WM occurs after 36 h of TSD and that 8 h TIBR after a long period of TSD leads to partial restoration of WM functions. The present findings represent the EEG profile of WM during mental fatigue

    PCDHGB7 hypermethylation-based Cervical cancer Methylation (CerMe) detection for the triage of high-risk human papillomavirus-positive women:a prospective cohort study

    Get PDF
    BackgroundImplementation of high-risk human papillomavirus (hrHPV) screening has greatly reduced the incidence and mortality of cervical cancer. However, a triage strategy that is effective, noninvasive, and independent from the subjective interpretation of pathologists is urgently required to decrease unnecessary colposcopy referrals in hrHPV-positive women.MethodsA total of 3251 hrHPV-positive women aged 30–82 years (median = 41 years) from International Peace Maternity and Child Health Hospital were included in the training set (n = 2116) and the validation set (n = 1135) to establish Cervical cancer Methylation (CerMe) detection. The performance of CerMe as a triage for hrHPV-positive women was evaluated.ResultsCerMe detection efficiently distinguished cervical intraepithelial neoplasia grade 2 or worse (CIN2 +) from cervical intraepithelial neoplasia grade 1 or normal (CIN1 −) women with excellent sensitivity of 82.4% (95% CI = 72.6 ~ 89.8%) and specificity of 91.1% (95% CI = 89.2 ~ 92.7%). Importantly, CerMe showed improved specificity (92.1% vs. 74.9%) in other 12 hrHPV type-positive women as well as superior sensitivity (80.8% vs. 61.5%) and specificity (88.9% vs. 75.3%) in HPV16/18 type-positive women compared with cytology testing. CerMe performed well in the triage of hrHPV-positive women with ASC-US (sensitivity = 74.4%, specificity = 87.5%) or LSIL cytology (sensitivity = 84.4%, specificity = 83.9%).ConclusionsPCDHGB7 hypermethylation-based CerMe detection can be used as a triage strategy for hrHPV-positive women to reduce unnecessary over-referrals.Trial registrationChiCTR2100048972. Registered on 19 July 2021.<br/

    Global Oceanic Diazotroph Database Version 2 and Elevated Estimate of Global N\u3csub\u3e2\u3c/sub\u3e Fixation

    Get PDF
    Marine diazotrophs convert dinitrogen (N2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1 (74±7 Tg N yr−1). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in the Indian Ocean to be 35±14 Tg N yr−1, which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional 15N2 bubble method yields lower rates in 69 % cases compared to the new 15N2 dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022)

    Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N 2 fixation

    Get PDF
    Marine diazotrophs convert dinitrogen (N2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1 (74±7 Tg N yr−1). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in the Indian Ocean to be 35±14 Tg N yr−1, which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional 15N2 bubble method yields lower rates in 69 % cases compared to the new 15N2 dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022).Additional Authors: Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Lu
    • …
    corecore