119 research outputs found

    Progression of Notch signaling regulation of B cells under radiation exposure

    Get PDF
    With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage

    Space Radiation-Induced Hematopoietic Stem Cell Injury

    Get PDF
    Space radiation is an unavoidable health risk during space activities. Hematopoietic cells are sensitive to radiation including proton and oxygen radiation and so on. Understanding the mechanisms responsible for detrimental effects of space radiation is important to achieve countermeasures protecting hematopoietic stem cells (HSCs), which generates different hematopoietic populations. However, the biological effects of various sources of space radiation on HSCs are not understood well. Induction of cellular apoptosis, reactive oxygen species (ROS), and DNA damage upon space radiation is believed to be critical mediators for HSC damage. In this chapter, we will mainly discuss the biological effectiveness of proton and oxygen radiation on the numbers and function of HSCs. Space radiation-induced apoptosis, ROS, and DNA damage were examined as well, which will provide foundation to develop novel strategies protecting HSCs from space radiation

    Simulating broken PT\cal PT-symmetric Hamiltonian systems by weak measurement

    Full text link
    By embedding a PT\cal PT-symmetric (pseudo-Hermitian) system into a large Hermitian one, we disclose the relations between PT\cal{PT}-symmetric Hamiltonians and weak measurement theory. We show that the amplification effect in weak measurement on a conventional quantum system can be used to effectively simulate a local broken PT\cal PT-symmetric Hamiltonian system, with the pre-selected state in the PT\cal PT-symmetric Hamiltonian system and its post-selected state resident in the dilated Hamiltonian system.Comment: 4 pages; with Supplemental Materia

    DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks.

    Get PDF
    Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA D

    Hematopoietic Jagged1 is a fetal liver niche factor required for functional maturation and engraftment of fetal hematopoietic stem cells

    Get PDF
    Notch signaling is essential for the emergence of definitive hematopoietic stem cells (HSCs) in the embryo and their development in the fetal liver niche. However, how Notch signaling is activated and which fetal liver cell type provides the ligand for receptor activation in HSCs is unknown. Here we provide evidence that endothelial Jagged1 (Jag1) has a critical early role in fetal liver vascular development but is not required for hematopoietic function during fetal HSC expansion. We demonstrate that Jag1 is expressed in many hematopoietic cells in the fetal liver, including HSCs, and that its expression is lost in adult bone marrow HSCs. Deletion of hematopoietic Jag1 does not affect fetal liver development; however, Jag1-deficient fetal liver HSCs exhibit a significant transplantation defect. Bulk and single-cell transcriptomic analysis of HSCs during peak expansion in the fetal liver indicates that loss of hematopoietic Jag1 leads to the downregulation of critical hematopoietic factors such as GATA2, Mllt3, and HoxA7, but does not perturb Notch receptor expression. Ex vivo activation of Notch signaling in Jag1-deficient fetal HSCs partially rescues the functional defect in a transplant setting. These findings indicate a new fetal-specific niche that is based on juxtracrine hematopoietic Notch signaling and reveal Jag1 as a fetal-specific niche factor essential for HSC function

    A Tie2-Notch1 signaling axis regulates regeneration of the endothelial bone marrow niche.

    Get PDF
    Loss-of-function studies have determined that Notch signaling is essential for hematopoietic and endothelial development. By deleting a single allele of the Notch1 transcriptional activation domain we generated viable, post-natal mice exhibiting hypomorphic Notch signaling. These heterozygous mice, which lack only one copy of the transcriptional activation domain, appear normal and have no endothelial or hematopoietic phenotype, apart from an inherent, cell-autonomous defect in T-cell lineage development. Following chemotherapy, these hypomorphs exhibited severe pancytopenia, weight loss and morbidity. This phenotype was confirmed in an endothelial-specific, loss-of-function Notch1 model system. Ang1, secreted by hematopoietic progenitors after damage, activated endothelial Tie2 signaling, which in turn enhanced expression of Notch ligands and potentiated Notch1 receptor activation. In our heterozygous, hypomorphic model system, the mutant protein that lacks the Notch1 transcriptional activation domain accumulated in endothelial cells and interfered with optimal activity of the wildtype Notch1 transcriptional complex. Failure of the hypomorphic mutant to efficiently drive transcription of key gene targets such as Hes1 and Myc prolonged apoptosis and limited regeneration of the bone marrow niche. Thus, basal Notch1 signaling is sufficient for niche development, but robust Notch activity is required for regeneration of the bone marrow endothelial niche and hematopoietic recovery.We thank Dr. Warren Pear for invaluable advice and for sharing the Notch1+/ΔTAD murine model system. We also thank Dr. Kishore Wary for sharing the Cdh5-CreERT2 mouse model. Drs. Jon Aster and Stephen Blacklow for advice and thoughtful discussion, Dr. Dawson Gerhardt for her help in generating the Notch1- ΔTAD plasmids and vector constructs, Dr. Jan Kitejewski for helpful advice on Notch mutant mice and Drs. Fotini Gounari and Linda Dagenstein of the University of Chicago transgenic mouse facility for help in maintaining the transgenic mouse colonies. The following cores at the University of Illinois at Chicago contributed to this study: RRC Histology Core and RRC Flow Cytometry Core. This study was funded by NIH grants 1R01HL134971 to KVP and 1R01HL136529 to DL.S

    Original Contribution The glutathione disulfide mimetic NOV-002 inhibits cyclophosphamide-induced hematopoietic and immune suppression by reducing oxidative stress

    Get PDF
    The oxidized glutathione mimetic NOV-002 is a unique anti-tumor agent that not only has the ability to inhibit tumor cell proliferation, survival, and invasion, but in some settings can also ameliorate cytotoxic chemotherapy-induced hematopoietic and immune suppression. However, the mechanisms by which NOV-002 protects the hematopoietic and immune systems against the cytotoxic effects of chemotherapy are not known. Therefore, in this study we investigated the mechanisms of action of NOV-002 using a mouse model in which hematopoietic and immune suppression was induced by cyclophosphamide (CTX) treatment. We found that NOV-002 treatment in a clinically comparable dose regimen attenuated CTXinduced reduction in bone marrow hematopoietic stem and progenitor cells (HSPCs) and reversed the immunosuppressive activity of myeloid-derived suppressor cells (MDSCs), which led to a significant improvement in hematopoietic and immune functions. These effects of NOV-002 may be attributable to its ability to modulate cellular redox. This suggestion is supported by the finding that NOV-002 treatment upregulated the expression of superoxide dismutase 3 and glutathione peroxidase 2 in HSPCs, inhibited CTX-induced increases in reactive oxygen species production in HSPCs and MDSCs, and attenuated CTX-induced reduction of the ratio of reduced glutathione to oxidized glutathione in splenocytes. These findings provide a better understanding of the mechanisms whereby NOV-002 modulates chemotherapy-induced myelosuppression and immune dysfunction and a stronger rationale for clinical utilization of NOV-002 to reduce chemotherapyinduced hematopoietic and immune suppression

    Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice

    Get PDF
    Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI)1–6. Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders7, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a ‘senolytic’ pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type– and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents

    EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair

    Get PDF
    Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fork junction, which permits 3' single strand invasion of a homologous template for fork restart. This 5' end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5' DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5' overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ

    A Sensitive and Quantitative Polymerase Chain Reaction-Based Cell Free In Vitro Non-Homologous End Joining Assay for Hematopoietic Stem Cells

    Get PDF
    Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism. Maintenance of genomic stability is crucial for the preservation of HSCs, which depends on their efficient repair of DNA damage, particularly DNA double strand breaks (DSBs). Because of the paucity of HSCs and lack of sensitive assays, directly measuring the ability of HSCs to repair DSBs has been difficult. Therefore, we developed a sensitive and quantitative cell free in vitro non-homologous end joining (NHEJ) assay using linearized plasmids as the substrates and quantitative polymerase chain reaction (qPCR) technique. This assay can sensitively detect DSB repair via NHEJ in less than 1 µg 293T cell nuclear proteins or nuclear extracts from about 5,000 to 10,000 human BM CD34+ hematopoietic cells. Using this assay, we confirmed that human bone marrow HSCs (CD34+CD38− cells) are less proficient in the repair of DSBs by NHEJ than HPCs (CD34+CD38+ cells). In contrast, mouse quiescent HSCs (Pyronin-Ylow LKS+ cells) and cycling HSCs (Pyronin-Yhi LKS+ cells) repaired the damage more efficiently than HPCs (LKS− cells). The difference in the abilities of human and mouse HSCs and HPCs to repair DSBs through NHEJ is likely attributed to their differential expression of key NHEJ DNA damage repair genes such as LIG4. These findings suggest that the qPCR-based cell free in vitro NHEJ assay can be used to sensitively measure the ability of human and mouse HSCs to repair DSBs
    • …
    corecore