1,016 research outputs found

    Drinfeld Twists and Algebraic Bethe Ansatz of the Supersymmetric t-J Model

    Full text link
    We construct the Drinfeld twists (factorizing FF-matrices) for the supersymmetric t-J model. Working in the basis provided by the FF-matrix (i.e. the so-called FF-basis), we obtain completely symmetric representations of the monodromy matrix and the pseudo-particle creation operators of the model. These enable us to resolve the hierarchy of the nested Bethe vectors for the gl(21)gl(2|1) invariant t-J model.Comment: 23 pages, no figure, Latex file, minor misprints are correcte

    Scalar field in cosmology: Potential for isotropization and inflation

    Full text link
    The important role of scalar field in cosmology was noticed by a number of authors. Due to the fact that the scalar field possesses zero spin, it was basically considered in isotropic cosmological models. If considered in an anisotropic model, the linear scalar field does not lead to isotropization of expansion process. One needs to introduce scalar field with nonlinear potential for the isotropization process to take place. In this paper the general form of scalar field potentials leading to the asymptotic isotropization in case of Bianchi type-I cosmological model, and inflationary regime in case of isotropic space-time is obtained. In doing so we solved both direct and inverse problem, where by direct problem we mean to find metric functions and scalar field for the given potential, whereas, the inverse problem means to find the potential and scalar field for the given metric function. The scalar field potentials leading to the inflation and isotropization were found both for harmonic and proper synchronic time.Comment: 10 page

    Cosmic Evolution in Brans-Dicke Chameleon Cosmology

    Full text link
    We have investigated the Brans-Dicke Chameleon theory of gravity and obtained exact solutions of the scale factor a(t)a(t), scalar field ϕ(t)\phi(t), an arbitrary function f(ϕ)f(\phi) which interact with the matter Lagrangian in the action of the Brans-Dicke Chameleon theory and potential V(ϕ)V(\phi) for different epochs of the cosmic evolution. We plot the functions a(t)a(t), ϕ(t)\phi(t), f(t)f(t) and V(ϕ)V(\phi) for different values of the Brans-Dicke parameter. In our models, there is no accelerating solution, only decelerating one with q>0q>0. The physical cosmological distances have been investigated carefully. Further the statefinder parameters pair and deceleration parameter are discussed.Comment: To be appear in "The European Physical Journal - Plus (EPJ Plus)",Extended version,15 pages, 17eps figure

    Dynamical 1/N approach to time-dependent currents through quantum dots

    Full text link
    A systematic truncation of the many-body Hilbert space is implemented to study how electrons in a quantum dot attached to conducting leads respond to time-dependent biases. The method, which we call the dynamical 1/N approach, is first tested in the most unfavorable case, the case of spinless fermions (N=1). We recover the expected behavior, including transient ringing of the current in response to an abrupt change of bias. We then apply the approach to the physical case of spinning electrons, N=2, in the Kondo regime for the case of infinite intradot Coulomb repulsion. In agreement with previous calculations based on the non-crossing approximation (NCA), we find current oscillations associated with transitions between Kondo resonances situated at the Fermi levels of each lead. We show that this behavior persists for a more realistic model of semiconducting quantum dots in which the Coulomb repulsion is finite.Comment: 18 pages, 7 eps figures, discussion extended for spinless electrons and typo

    The Subleading Term of the Strong Coupling Expansion of the Heavy-Quark Potential in a N=4\mathcal N=4 Super Yang-Mills Vacuum

    Full text link
    Applying the AdS/CFT correspondence, the expansion of the heavy-quark potential of the N=4{\cal N}=4 supersymmetric Yang-Mills theory at large NcN_c is carried out to the sub-leading term in the large 't Hooft coupling at zero temperature. The strong coupling corresponds to the semi-classical expansion of the string-sigma model, the gravity dual of the Wilson loop operator, with the sub-leading term expressed in terms of functional determinants of fluctuations. The singularities of these determinants are examined and their contributions are evaluated numerically.Comment: Updated version with minor typo corrections and new reference

    Statefinder Parameters for Different Dark Energy Models with Variable G Correction in Kaluza-Klein Cosmology

    Full text link
    In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable GG correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.Comment: 9 pages, no figure, accepted for publication in IJTP. arXiv admin note: text overlap with arXiv:1104.2366 by other author

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions

    Full text link
    Previous and present "academic" research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is somehow believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases also the interplay of all processes, i.e. how they act together, plays a crucial role. For a "predictive materials science modeling with microscopic understanding", a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as DFT have become a standard tool for the accurate description of individual molecular processes. Here, we discuss the present status of emerging methodologies which attempt to achieve a (hopefully seamless) match of DFT with concepts from statistical mechanics or thermodynamics, in order to also address the interplay of the various molecular processes. The new quality of, and the novel insights that can be gained by, such techniques is illustrated by how they allow the description of crystal surfaces in contact with realistic gas-phase environments.Comment: 24 pages including 17 figures, related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
    corecore