538 research outputs found

    Selective Role of the Catalytic PI3K Subunit p110β in Impaired Higher Order Cognition in Fragile X Syndrome

    Get PDF
    SummaryDistinct isoforms of the PI3K catalytic subunit have specialized functions in the brain, but their role in cognition is unknown. Here, we show that the catalytic subunit p110β plays an important role in prefrontal cortex (PFC)-dependent cognitive defects in mouse models of Fragile X syndrome (FXS), an inherited intellectual disability. FXS is caused by loss of function of the fragile X mental retardation protein (FMRP), which binds and translationally represses mRNAs. PFC-selective knockdown of p110β, an FMRP target that is translationally upregulated in FXS, reverses deficits in higher cognition in Fmr1 knockout mice. Genetic full-body reduction of p110β in Fmr1 knockout mice normalizes excessive PI3K activity, restores stimulus-induced protein synthesis, and corrects increased dendritic spine density and behavior. Notably, adult-onset PFC-selective Fmr1 knockdown mice show impaired cognition, which is rescued by simultaneous p110β knockdown. Our results suggest that FMRP-mediated control of p110β is crucial for neuronal protein synthesis and cognition

    Physical Activity Across the Curriculum (PAAC): a randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children

    Get PDF
    Objective Physical Activity Across the Curriculum (PAAC) was a three-year cluster randomized controlled trial to promote physical activity and diminish increases in overweight and obesity in elementary school children. Methods Twenty-four elementary schools were cluster randomized to the PAAC intervention or served as control. All children in grades two and three were followed to grades four and five. PAAC promoted 90 minutes/wk of moderate to vigorous intensity physically active academic lessons delivered by classroom teachers. BMI was the primary outcome, daily PA and academic achievement were secondary outcomes. Results The three-year change in BMI for PAAC was 2.0 ± 1.9 and control 1.9 ± 1.9, respectively (NS). However, change in BMI from baseline to three years was significantly influenced by exposure to PAAC. Schools with ≥75 minutes of PAAC/wk showed significantly less increase in BMI at three years compared to schools that had <75 minutes of PAAC (1.8 ± 1.8 vs. 2.4 ± 2.0, p=0.02). PAAC schools had significantly greater changes in daily PA and academic achievement scores. Conclusions The PAAC approach may promote daily PA and academic achievement in elementary school children. Additionally, 75 minutes of PAAC activities may attenuate increases in BMI

    Physical activity across the curriculum: year one process evaluation results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical Activity Across the Curriculum (PAAC) is a 3-year elementary school-based intervention to determine if increased amounts of moderate intensity physical activity performed in the classroom will diminish gains in body mass index (BMI). It is a cluster-randomized, controlled trial, involving 4905 children (2505 intervention, 2400 control).</p> <p>Methods</p> <p>We collected both qualitative and quantitative process evaluation data from 24 schools (14 intervention and 10 control), which included tracking teacher training issues, challenges and barriers to effective implementation of PAAC lessons, initial and continual use of program specified activities, and potential competing factors, which might contaminate or lessen program effects.</p> <p>Results</p> <p>Overall teacher attendance at training sessions showed exceptional reach. Teachers incorporated active lessons on most days, resulting in significantly greater student physical activity levels compared to controls (p < 0.0001). Enjoyment ratings for classroom-based lessons were also higher for intervention students. Competing factors, which might influence program results, were not carried out at intervention or control schools or were judged to be minimal.</p> <p>Conclusion</p> <p>In the first year of the PAAC intervention, process evaluation results were instrumental in identifying successes and challenges faced by teachers when trying to modify existing academic lessons to incorporate physical activity.</p

    Interactive molecular dynamics in virtual reality from quantum chemistry to drug binding: An open-source multi-person framework

    Get PDF
    © 2019 Author(s). As molecular scientists have made progress in their ability to engineer nanoscale molecular structure, we face new challenges in our ability to engineer molecular dynamics (MD) and flexibility. Dynamics at the molecular scale differs from the familiar mechanics of everyday objects because it involves a complicated, highly correlated, and three-dimensional many-body dynamical choreography which is often nonintuitive even for highly trained researchers. We recently described how interactive molecular dynamics in virtual reality (iMD-VR) can help to meet this challenge, enabling researchers to manipulate real-time MD simulations of flexible structures in 3D. In this article, we outline various efforts to extend immersive technologies to the molecular sciences, and we introduce "Narupa," a flexible, open-source, multiperson iMD-VR software framework which enables groups of researchers to simultaneously cohabit real-time simulation environments to interactively visualize and manipulate the dynamics of molecular structures with atomic-level precision. We outline several application domains where iMD-VR is facilitating research, communication, and creative approaches within the molecular sciences, including training machines to learn potential energy functions, biomolecular conformational sampling, protein-ligand binding, reaction discovery using "on-the-fly" quantum chemistry, and transport dynamics in materials. We touch on iMD-VR's various cognitive and perceptual affordances and outline how these provide research insight for molecular systems. By synergistically combining human spatial reasoning and design insight with computational automation, technologies such as iMD-VR have the potential to improve our ability to understand, engineer, and communicate microscopic dynamical behavior, offering the potential to usher in a new paradigm for engineering molecules and nano-architectures

    Evaluating priority setting success in healthcare: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In healthcare today, decisions are made in the face of serious resource constraints. Healthcare managers are struggling to provide high quality care, manage resources effectively, and meet changing patient needs. Healthcare managers who are constantly making difficult resource decisions desire a way to improve their priority setting processes. Despite the wealth of existing priority setting literature (for example, program budgeting and marginal analysis, accountability for reasonableness, the 'describe-evaluate-improve' strategy) there are still no tools to evaluate how healthcare resources are prioritised. This paper describes the development and piloting of a process to evaluate priority setting in health institutions. The evaluation process was designed to examine the procedural and substantive dimensions of priority setting using a multi-methods approach, including a staff survey, decision-maker interviews, and document analysis.</p> <p>Methods</p> <p>The evaluation process was piloted in a mid-size community hospital in Ontario, Canada while its leaders worked through their annual budgeting process. Both qualitative and quantitative methods were used to analyze the data.</p> <p>Results</p> <p>The evaluation process was both applicable to the context and it captured the budgeting process. In general, the pilot test provided support for our evaluation process and our definition of success, (i.e., our conceptual framework).</p> <p>Conclusions</p> <p>The purpose of the evaluation process is to provide a simple, practical way for an organization to better understand what it means to achieve success in its priority setting activities and identify areas for improvement. In order for the process to be used by healthcare managers today, modification and contextualization of the process are anticipated. As the evaluation process is applied in more health care organizations or applied repeatedly in an organization, it may become more streamlined.</p

    Network Archaeology: Uncovering Ancient Networks from Present-day Interactions

    Get PDF
    Often questions arise about old or extinct networks. What proteins interacted in a long-extinct ancestor species of yeast? Who were the central players in the Last.fm social network 3 years ago? Our ability to answer such questions has been limited by the unavailability of past versions of networks. To overcome these limitations, we propose several algorithms for reconstructing a network's history of growth given only the network as it exists today and a generative model by which the network is believed to have evolved. Our likelihood-based method finds a probable previous state of the network by reversing the forward growth model. This approach retains node identities so that the history of individual nodes can be tracked. We apply these algorithms to uncover older, non-extant biological and social networks believed to have grown via several models, including duplication-mutation with complementarity, forest fire, and preferential attachment. Through experiments on both synthetic and real-world data, we find that our algorithms can estimate node arrival times, identify anchor nodes from which new nodes copy links, and can reveal significant features of networks that have long since disappeared.Comment: 16 pages, 10 figure

    Priority setting: what constitutes success? A conceptual framework for successful priority setting

    Get PDF
    BACKGROUND: The sustainability of healthcare systems worldwide is threatened by a growing demand for services and expensive innovative technologies. Decision makers struggle in this environment to set priorities appropriately, particularly because they lack consensus about which values should guide their decisions. One way to approach this problem is to determine what all relevant stakeholders understand successful priority setting to mean. The goal of this research was to develop a conceptual framework for successful priority setting. METHODS: Three separate empirical studies were completed using qualitative data collection methods (one-on-one interviews with healthcare decision makers from across Canada; focus groups with representation of patients, caregivers and policy makers; and Delphi study including scholars and decision makers from five countries). RESULTS: This paper synthesizes the findings from three studies into a framework of ten separate but interconnected elements germane to successful priority setting: stakeholder understanding, shifted priorities/reallocation of resources, decision making quality, stakeholder acceptance and satisfaction, positive externalities, stakeholder engagement, use of explicit process, information management, consideration of values and context, and revision or appeals mechanism. CONCLUSION: The ten elements specify both quantitative and qualitative dimensions of priority setting and relate to both process and outcome components. To our knowledge, this is the first framework that describes successful priority setting. The ten elements identified in this research provide guidance for decision makers and a common language to discuss priority setting success and work toward improving priority setting efforts

    Heterochrony and Cross-Species Intersensory Matching by Infant Vervet Monkeys

    Get PDF
    Understanding the evolutionary origins of a phenotype requires understanding the relationship between ontogenetic and phylogenetic processes. Human infants have been shown to undergo a process of perceptual narrowing during their first year of life, whereby their intersensory ability to match the faces and voices of another species declines as they get older. We investigated the evolutionary origins of this behavioral phenotype by examining whether or not this developmental process occurs in non-human primates as well.We tested the ability of infant vervet monkeys (Cercopithecus aethiops), ranging in age from 23 to 65 weeks, to match the faces and voices of another non-human primate species (the rhesus monkey, Macaca mulatta). Even though the vervets had no prior exposure to rhesus monkey faces and vocalizations, our findings show that infant vervets can, in fact, recognize the correspondence between rhesus monkey faces and voices (but indicate that they do so by looking at the non-matching face for a greater proportion of overall looking time), and can do so well beyond the age of perceptual narrowing in human infants. Our results further suggest that the pattern of matching by vervet monkeys is influenced by the emotional saliency of the Face+Voice combination. That is, although they looked at the non-matching screen for Face+Voice combinations, they switched to looking at the matching screen when the Voice was replaced with a complex tone of equal duration. Furthermore, an analysis of pupillary responses revealed that their pupils showed greater dilation when looking at the matching natural face/voice combination versus the face/tone combination.Because the infant vervets in the current study exhibited cross-species intersensory matching far later in development than do human infants, our findings suggest either that intersensory perceptual narrowing does not occur in Old World monkeys or that it occurs later in development. We argue that these findings reflect the faster rate of neural development in monkeys relative to humans and the resulting differential interaction of this factor with the effects of early experience

    Micro-CT imaging reveals<i> Mekk3 </i>heterozygosity prevents cerebral cavernous malformations in <i>Ccm2</i>-deficient mice

    Get PDF
    Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases

    Composition is the Core Driver of the Language-selective Network

    Get PDF
    • …
    corecore