110 research outputs found
Whole-Genome Sequencing Of Mesorhizobium huakuii 7653R Provides Molecular Insights into Host Specificity and Symbiosis Island Dynamics
Background
Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general.
Results
In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species.
Conclusions
Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome
Initiator and executioner caspases in salivary gland apoptosis of Rhipicephalus haemaphysaloides
Background: Apoptosis is fundamental in maintaining cell balance in multicellular organisms, and caspases play a crucial role in apoptosis pathways. It is reported that apoptosis plays an important role in tick salivary gland degeneration. Several different caspases have been found in ticks, but the interactions between them are currently unknown. Here, we report three new caspases, isolated from the salivary glands of the tick Rhipicephalus haemaphysaloides. Methods: The full-length cDNA of the RhCaspases 7, 8 and 9 genes were obtained by transcriptome, and RhCaspases 7, 8 and 9 were expressed in E. coli; after protein purification and immunization in mice, specific polyclonal antibodies (PcAb) were created in response to the recombinant protein. Reverse-transcription quantitative PCR (RT-qPCR) and western blot were used to detect the existence of RhCaspases 7, 8 and 9 in ticks. TUNEL assays were used to determine the apoptosis level in salivary glands at different feeding times after gene silencing. The interaction between RhCaspases 7, 8 and 9 were identified by co-transfection assays. Results: The transcription of apoptosis-related genes in R. haemaphysaloides salivary glands increased significantly after tick engorgement. Three caspase-like molecules containing conserved caspase domains were identified and named RhCaspases 7, 8 and 9. RhCaspase8 and RhCaspase9 contain a long pro-domain at their N-terminals. An RT-qPCR assay demonstrated that the transcription of these three caspase genes increased significantly during the engorged periods of the tick developmental stages (engorged larval, nymph, and adult female ticks). Transcriptional levels of RhCaspases 7, 8 and 9 in salivary glands increased more significantly than other tissues post-engorgement. RhCaspase9-RNAi treatment significantly inhibited tick feeding. In contrast, knockdown of RhCaspase7 and RhCaspase8 had no influence on tick feeding. Compared to the control group, apoptosis levels were significantly reduced after interfering with RhCaspase 7, 8 and 9 expressions. Co-transfection assays showed RhCaspase7 was cleaved by RhCaspases 8 and 9, demonstrating that RhCaspases 8 and 9 are initiator caspases and RhCaspase7 is an executioner caspase. Conclusions: To the best of our knowledge, this is the first study to identify initiator and executioner caspases in ticks, confirm the interaction among them, and associate caspase activation with tick salivary gland degeneration
Photoflexoelectric effect in halide perovskites
Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs
Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics
Ferroelectrics/antiferroelectrics with high dielectric breakdown strength have the potential to store a great amount of electrical energy, attractive for many modern applications in electronic devices and systems. Here we demonstrate that a giant electric energy density (154 J×cm-3, 3 times the highest value of lead-based systems and 5 times the value of the best dielectric/ferroelectric polymer), together with the excellent fatigue-free property, good thermal stability and high efficiency, is realized in pulsed laser deposited (Bi1/2Na1/2)0.9118La0.02Ba0.0582(Ti0.97Zr0.03)O3 (BNLBTZ) epitaxial lead-free relaxor thin films with the coexistence of ferroelectric (FE) and antiferroelectric (AFE) phases. This is endowed by high epitaxial quality, great relaxor dispersion and the coexistence of the FE/AFE phases near the morphotropic phase boundary (MPB). The giant energy storage effect of the BNLBTZ lead-free relaxor thin films may make a great impact on the modern energy storage technology
PbZrO3-Based Antiferroelectric Thin Film Capacitors with High Energy Storage Density
A series of 400-nm-thick sandwich structured Pb(1+x)ZrO3/(Pb,Eu)ZrO3/Pb(1+x)ZrO3(PZO/PEZO/PZO) antiferro-electric thin films with different Pb excess content (x) (x=0%, 10%, 20%, and 30%) in the PZO precursors have been successfully deposited on Pt(111)/Ti/SiO2/Si substrates by a sol–gel method. The effects of Pb excess content on the dielectric properties, and energy storage performance of the PZO/PEZO/PZO thin films have been investigated in detail. It is found that all the films show a unique perovskite phase structure. With increasing Pb excess content in the PZO precursors, P-E hysteresis loop changes from slanted to square shape. Meanwhile, a larger antiferroelectric to ferroelectric switching field (EAF) and ferroelectric to antiferroelectric switching field (EFA) are observed in the films with higher Pb excess content. When increasing Pb excess content from 0% to 30%, the energy storage density of the sandwich structured films is remarkably improved from 11.4 to 14.8 J/cm3 at 1000 kV/cm
Localized Fetomaternal Hyperglycemia: Spatial and Kinetic Definition by Positron Emission Tomography
to isolated hyperglycemia in the pregnant rat. mg/dL) localized to the left uterine artery was sustained for at least 48 hours while maternal euglycemia was maintained. fetal effects of isolated hyperglycemia. Broadly, this approach can be extended to study a variety of maternal-sided perturbations suspected to directly affect fetal health
A Straightforward Convergence Method for ICCG Simulation of Multiloop and Time-Stepping FE Model of Synchronous Generators with Simultaneous AC and Rectified DC Connections
Now electric machines integrate with power electronics to form inseparable systems in lots of applications for high performance. For such systems, two kinds of nonlinearities, the magnetic nonlinearity of iron core and the circuit nonlinearity caused by power electronics devices, coexist at the same time, which makes simulation time-consuming. In this paper, the multiloop model combined with FE model of AC-DC synchronous generators, as one example of electric machine with power electronics system, is set up. FE method is applied for magnetic nonlinearity and variable-step variable-topology simulation method is applied for circuit nonlinearity. In order to improve the simulation speed, the incomplete Cholesky conjugate gradient (ICCG) method is used to solve the state equation. However, when power electronics device switches off, the convergence difficulty occurs. So a straightforward approach to achieve convergence of simulation is proposed. At last, the simulation results are compared with the experiments
Rotor end factors for 2-D FEA of induction motors with smooth or slitted solid rotor
Modifying the equivalent rotor resistivity with rotor end factor in 2-dimension (2-D) finite element analysis (FEA) is an effective way to analyze the 3-dimension (3-D) solid rotor problems. For the smooth solid rotor, five different rotor end factors are discussed and compared with each other. It is theoretically clarified that the resistivity of rotor in 2-D FEA should be multiplied by the square of rotor end factors to take the 3-D end effect of solid rotor into account. For the slitted solid rotor, an improved rotor end factor is proposed based on the equivalent area algorithm of eddy currents in rotor, since the end factors of smooth solid rotor are not applicable. Finally, the time-harmonic finite element method (FEM) combined with the rotor end factor is applied to analyze the performance of solid rotor induction motor. The tested and computed results are in good agreement, which proves the effectiveness of rotor end factor for the simplication of 3-D solid rotor problems
- …