185 research outputs found

    Effects of dissolved organic carbon on methylmercury bioavailability in stream ecosystems

    Get PDF

    An Agriculture-Based Finance Model for Indian Community Colleges

    Get PDF
    This paper presents a finance model for Indian community colleges which proposes that these colleges begin and operate agricultural operations which will generate revenue for the colleges. The paper proposes that the college working with the respective tribe use tribal agricultural resources to produce income which can then be used to meet tribal objectives in higher education. The model was reviewed by a panel with expertise in reservation and tribal community college development. History of the Problem: This paper traces the status of tribal land and natural resources from early Federal/Indian relationships through the Dawes Allotment Act up to the present day status quo. The paper also presents various legal interpretations of Indian treaties, status, and reservations which have prevailed throughout history. The paper also describes the development of Indian community colleges as an Indian initiated effort to improve reservation life. An Agriculture-Based Finance Model for Indian Community Colleges: The model is a two-phase description of the procedures that should be followed to begin and operate a tribal community college agricultural operation. Each phase presents sample tools which might be helpful in this process. Review of the Model: The model was reviewed by four people who were chosen for their expertise and background in Indian higher education and tribal economic development. The reviewers provided valuable insights into problems which might be encountered while implementing the model. The reviewers also suggested additions which might be helpful to those implementing the model. Conclusions: The review of the model provided two groups of conclusions. The conclusions which discuss features of the model are: 1. The model will work but certain conditions are necessary for proper implementation. Given a feasible situation, there must be good management of the operation. 2. Political approval and commitment to the project from the tribal council and local political groups are essential elements in the model. 3. The model, if successfully implemented, would stand as an educational role model for the tribe in development and management of tribal resources. 4. Before the model is implemented on a specific reservation, detailed background information needs to be gathered which identifies local social, economic, and political characteristics. 5. Continuity of leadership is an important factor in long range success of the model. The conclusions which are suggestions for additions to the model are: 1. The scope of the model (agriculture) is too narrow and should include nearly any type of economic development. 2. The problems addressed by the model are not only economic but educational as well. The model, whether centered around agriculture or other enterprises, could easily be expanded to combine the management framework with an appropriate educational program. 3. If the focus of the model is aimed at agricultural or natural resource development, the model should incorporate a Land Ethic consistent with Indian philosophy. 4. In the planning portions of the model, it is advisable to use outside resources rather than to rely solely on existing governmental agencies. 5. Specific evaluation measures should be detailed for both pre-operational and operational stages of the model

    Effects of dissolved organic carbon on methylmercury bioavailability in stream ecosystems

    Get PDF

    Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Get PDF
    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperaturesand the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonallyfrozen ground is hampered by our inability to adequately characterize the frequency, depth, durationand intensity of soil frost events. We evaluated the use of ground penetrating radar to nondestructivelydelineate soil frost under field conditions in three forest ecosystems. Soil frost depth was monitoredperiodically using a 900 MHz antenna in South Burlington, Vermont (SB), Sleepers River Watershed,North Danville, Vermont (SR) and Hubbard Brook Experimental Forest, New Hampshire (HBEF) duringwinter 2011–2012 on plots with snow and cleared of snow. GPR-based estimates were compared to datafrom thermistors and frost tubes, which estimate soil frost depth with a color indicating solution. In theabsence of snow, frost was initially detected at a depth of 8–10 cm. Dry snow up to 35 cm deep, enhancednear-surface frost detection, raising the minimum frost detection depth to 4–5 cm. The most favorablesurface conditions for GPR detection were bare soil or shallow dry snow where frost had penetrated to theminimum detectable depth. Unfavorable conditions included: standing water on frozen soil, wet snow,thawed surface soils and deep snow pack. Both SB and SR were suitable for frost detection most of thewinter, while HBEF was not. Tree roots were detected as point reflections and were readily discriminatedfrom continuous frost reflections. The bias of GPR frost depth measurements relative to thermistors wassite dependent averaging 0.1 cm at SB and 1.1 cm at SR, and was not significantly different than zero. Whenseparated by snow manipulation treatment at SR, overestimation of soil frost depth (5.5 cm) occurredon plots cleared of snow and underestimation (−1.5 cm) occurred on plots with snow. Despite somelimitations posed by site and surface suitability, GPR could be useful for adding a spatial component topre-installed soil frost monitoring networks

    Tropical river suspended sediment and solute dynamics in storms during an extreme drought

    Get PDF
    Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) “new water” dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry

    Spatial patterns of soil nitrification and nitrate export from forested headwaters in the northeastern United States

    Get PDF
    Nitrogen export from small forested watersheds is known to be affected by N deposition but with high regional variability. We studied 10 headwater catchments in the northeastern United States across a gradient of N deposition (5.4 - 9.4 kg ha-1 yr-1) to determine if soil nitrification rates could explain differences in stream water NO 3- export. Average annual export of two years (October 2002 through September 2004) varied from 0.1 kg NO3--N ha-1 yr-1 at Cone Pond watershed in New Hampshire to 5.1 kg ha-1 yr-1 at Buck Creek South in the western Adirondack Mountains of New York. Potential net nitrification rates and relative nitrification (fraction of inorganic N as NO3-) were measured in Oa or A soil horizons at 21-130 sampling points throughout each watershed. Stream NO3- export was positively related to nitrification rates (r2 = 0.34, p = 0.04) and the relative nitrification (r2 = 0.37, p = 0.04). These relationships were much improved by restricting consideration to the 6 watersheds with a higher number of rate measurements (59-130) taken in transects parallel to the streams (r 2 of 0.84 and 0.70 for the nitrification rate and relative nitrification, respectively). Potential nitrification rates were also a better predictor of NO3- export when data were limited to either the 6 sampling points closest to the watershed outlet (r2 = 0.75) or sampling points \u3c250 m from the watershed outlet (r2 = 0.68). The basal area of conifer species at the sampling plots was negatively related to NO3- export. These spatial relationships found here suggest a strong influence of near-stream and near-watershed-outlet soils on measured stream NO3- export. Copyright 2012 by the American Geophysical Union

    Soil Aggregates as a Source of Dissolved Organic Carbon to Streams: An Experimental Study on the Effect of Solution Chemistry on Water Extractable Carbon

    Get PDF
    Over the past two decades, headwater streams of the northern hemisphere have shown increased amounts of dissolved organic carbon (DOC), coinciding with decreased acid deposition. The exact nature of the mechanistic link between precipitation composition and stream water DOC is still widely debated in the literature. We hypothesize that soil aggregates are the main source of stream water DOC and that DOC release is greater in organic rich, riparian soils vs. hillslope soils. To test these hypotheses, we collected soils from two main landscape positions (hillslope and riparian zones) from the acid-impacted Sleepers River Research Watershed in northeastern Vermont. We performed aqueous soil extracts with solutions of different ionic strength (IS) and composition to simulate changes in soil solution. We monitored dynamic changes in soil particle size, aggregate architecture and composition, leachate DOC concentrations, dissolved organic matter (DOM) characteristics by fluorescence spectroscopy and trends in bioavailability. In low IS solutions, extractable DOC concentrations were significantly higher, particle size (by laser diffraction) was significantly smaller and organic material was separated from mineral particles in scanning electron microscope observations. Furthermore, higher DOC concentrations were found in Na+ compared to Ca2+ solutions of the same IS. These effects are attributed to aggregate dispersion due to expanding diffuse double layers in decreased IS solutions and to decreased bridging by divalent cations. Landscape position impacted quality but not quantity of released DOC. Overall, these results indicate that soil aggregates might be one important link between Critical Zone inputs (i.e., precipitation) and exports in streams
    corecore