1,050 research outputs found

    Spring and surface water quality of the Cyprus ophiolites

    Get PDF
    A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1) Mg-HCO3, (2) Na-SO4-Cl-HCO3, (3) Na-Ca-Cl-SO4-OH-CO3, (4) Na-Cl-SO4 and (5) Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water) and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high

    Surface-enhanced spatially-offset raman spectroscopy (SESORS) in tissue analogs

    Get PDF
    Surface-enhanced, spatially-offset Raman spectroscopy (SESORS) combines the remarkable enhancements in sensitivity afforded by surface-enhanced Raman spectroscopy (SERS) with the non-invasive, sub-surface sampling capabilities of spatially-offset Raman spectroscopy (SORS). Taken together, these techniques show great promise for in vivo Raman measurements. Herein, we present a step forward for this technique, demonstrating SESORS through tissue analogs of six known and varied thickness, with a large number of distinct spatial offsets, in a back-scattering optical geometry. This is accomplished by spin-coating SERS-active nanoparticles (NPs) on glass slides, and monitoring the relative spectral contribution from the NPs and tissue sections, respectively, as a function of both tissue thickness and spatial offset of the collection probe. The results show that SESORS outperforms SERS alone for this purpose, NP signal is attainable at tissue thicknesses in excess of 6.75 mm, and that greater tissue thicknesses require greater spatial offsets to maximize NP signal, all with an optical geometry optimized for utility. This demonstration represents a step forward toward the implementation of SESORS for non-invasive, in vivo analysis

    Detection of multiple nitroaromatic explosives via formation of a Janowsky complex and SERS

    Get PDF
    Military-grade explosives such as 2,4,6-trinitroluene (TNT) are still a major worldwide concern in terms of terror threat and environmental impact. The most common methods currently employed for the detection of explosives involve colorimetric tests, which are known to be rapid and portable; however, they often display false positives and lack sensitivity. Other methods used include ion mobility mass spectrometry, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), which despite producing more reliable results often require large, expensive instrumentation and specially trained staff. Here we demonstrate an alternative approach that utilizes the formation of a colored Janowsky complex with nitroaromatic explosives through reaction of the enolate ion of 3-mercapto-2-butanone. The colored complex is formed rapidly and can then be detected sensitively using surface-enhanced Raman scattering (SERS). We demonstrate that SERS can be used as a quick, sensitive, and selective technique for the detection of 2,4,6-trinitrotoluene (TNT), hexanitrostillbene (HNS), and 2,4,6-trinitrophenylmethylnitramine (tetryl) with a detection limit of 6.81 ng mL -1 achieved for TNT, 17.2 ng mL -1 for tetryl, and 135.1 ng mL -1 for HNS. This method of detection also requires minimal sample preparation, can be done in a solution-based format, and utilizes the same precursor reagents for complex formation with each of the explosives which can then be identified due to the specificity of the unique SERS response obtained. We demonstrate the ability to simultaneously identify three explosive compounds within a total analysis time of 10 min. This method of detection shows promise for the development of rapid and portable SERS-based assays which can be utilized in the field in order to achieve reliable and quantitative detection

    HAWKS: Evolving Challenging Benchmark Sets for Cluster Analysis

    Get PDF
    Comprehensive benchmarking of clustering algorithms is rendered difficult by two key factors: (i) the elusiveness of a unique mathematical definition of this unsupervised learning approach and (ii) dependencies between the generating models or clustering criteria adopted by some clustering algorithms and indices for internal cluster validation. Consequently, there is no consensus regarding the best practice for rigorous benchmarking, and whether this is possible at all outside the context of a given application. Here, we argue that synthetic datasets must continue to play an important role in the evaluation of clustering algorithms, but that this necessitates constructing benchmarks that appropriately cover the diverse set of properties that impact clustering algorithm performance. Through our framework, HAWKS, we demonstrate the important role evolutionary algorithms play to support flexible generation of such benchmarks, allowing simple modification and extension. We illustrate two possible uses of our framework: (i) the evolution of benchmark data consistent with a set of hand-derived properties and (ii) the generation of datasets that tease out performance differences between a given pair of algorithms. Our work has implications for the design of clustering benchmarks that sufficiently challenge a broad range of algorithms, and for furthering insight into the strengths and weaknesses of specific approaches

    Morphology and Spectral Absorption Characteristics of Retinal Photoreceptors in the Southern Hemisphere Lamprey (Geotria australis)

    Get PDF
    The morphology and spectral absorption characteristics of the retinal photoreceptors in the southern hemisphere lamprey Geotria australis (Agnatha) were studied using light and electron microscopy and microspectrophotometry. The retinae of both downstream and upstream migrants of Geotria contained two types of cone photoreceptor and one type of rod photoreceptor. Visual pigments contained in the outer segments of these three photoreceptor types had absorbance spectra typical of porphyropsins and with wavelengths of maximum absorbance (downstream/upstream) at 610/616 nm (long-wavelength-sensitive cone,LWS),515/515nm(medium-wavelength-sensitive cone, MWS), and 506/500 nm (medium-wavelength-sensitive rod). A "yellow" photostable pigment was present in the myoid region of all three types of photoreceptor in the downstream migrant. The same short-wavelength-absorbing pigment, which prevents photostimulation of the beta band of the visual pigment in the outer segment, was present in the rods and LWS cones of the upstream migrant, but was replaced by a large transparent ellipsosome in the MWS cones. Using microspectrophotometric and anatomical data, the quantal spectral sensitivity of each photoreceptor type was calculated. Our results provide the first evidence of a jawless vertebrate, represented today solely by the lampreys and hagfishes, with two morphologically and physiologically distinct types of cone photoreceptors, in addition to a rod-like photoreceptor containing a colored filter (a cone-like characteristic). In contrast, all other lampreys studied thus far have either (1) one type of cone and one type of rod, or (2) a single type of rod-like photoreceptor. The evolution or retention of a second type of cone in adult Geotria is presumably an adaptation to life in the brightly lit surface waters of the Southern Ocean, where this species lives during the marine phase of its life cycle. The functional significance of the unique visual system of Geotria is discussed in relation to its life cycle and the potential for color vision

    Targeted Screening for Alzheimer's Disease Clinical Trials Using Data-Driven Disease Progression Models

    Get PDF
    Heterogeneity in Alzheimer's disease progression contributes to the ongoing failure to demonstrate efficacy of putative disease-modifying therapeutics that have been trialed over the past two decades. Any treatment effect present in a subgroup of trial participants (responders) can be diluted by non-responders who ideally should have been screened out of the trial. How to identify (screen-in) the most likely potential responders is an important question that is still without an answer. Here, we pilot a computational screening tool that leverages recent advances in data-driven disease progression modeling to improve stratification. This aims to increase the sensitivity to treatment effect by screening out non-responders, which will ultimately reduce the size, duration, and cost of a clinical trial. We demonstrate the concept of such a computational screening tool by retrospectively analyzing a completed double-blind clinical trial of donepezil in people with amnestic mild cognitive impairment (clinicaltrials.gov: NCT00000173), identifying a data-driven subgroup having more severe cognitive impairment who showed clearer treatment response than observed for the full cohort

    Vision in the Southern Hemisphere Lamprey Mordacia Mordax: Spatial Distribution, Spectral Absorption Characteristics, and Optical Sensitivity of a Single Class of Retinal Photoreceptor

    Get PDF
    The dorso-laterally located eyes of the southern hemisphere lamprey Mordacia mordax (Agnatha) contain a single morphological type of retinal photoreceptor, which possesses ultrastructural characteristics of both rods and cones. This photoreceptor has a large refractile ellipsosome in the inner segment and a long cylindrical outer segment surrounded by a retinal pigment epithelium that contains two types of tapetal reflectors. The photoreceptors form a hexagonal array and attain their peak density (33,200 receptors0mm2) in the ventro-temporal retina. Using the size and spacing of the photoreceptors and direct measures of aperture size and eye dimensions, the peak spatial resolving power and optical sensitivity are estimated to be 1.7 cycles deg21 (minimum separable angle of 34'7'' ) and 0.64 mm2 steradian (white light) and 1.38 mm2 steradian (preferred wavelength or lmax), respectively. Microspectrophotometry reveals that the visual pigment located within the outer segment is a rhodopsin with a wavelength of maximum absorbance (lmax) at 514 nm. The ellipsosome has very low absorptance (,0.05) across the measured spectrum (350-750 nm) and probably does not act as a spectral filter. In contrast to all other lampreys studied, the optimized receptor packing, the large width of the ellipsosome-bearing inner segment, together with the presence of a retinal tapetum in the photophobic Mordacia, all represent adaptations for low light vision and optimizing photon capture

    Spin glass or random anisotropy?: The origin of magnetically glassy behavior in nanostructured GdAl\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Initially crystalline GdAl2 was mechanically milled for long times to produce a highly chemically disordered phase with approximately 8-nm grains. Analysis of dc magnetization measurements using an Arrott plot and the approach to saturation suggest the presence of significant random anisotropy. ac susceptibility measurements showed that the shift in the peak temperature with frequency usually seen in magnetically glassy and superparamagnetic systems was virtually undetectable in the 10–1000-Hz frequency range. Based on these results, we believe that this material represents an interacting system with random anisotropy, where the anisotropy is the result of surface and interface asymmetries. ©2005 American Institute of Physic

    Core excitations across the neutron shell gap in ²⁰⁷Tl

    Get PDF
    The single closed-neutron-shell, one proton-hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupol

    Sensitive SERS nanotags for use with 1550 nm (retina-safe) laser excitation

    Get PDF
    Chalcogenopyrylium nanotags demonstrate an unprecedented SERS performance with a retina safe, 1550 nm laser excitation. These unique nanotags consisting of chalcogenopyrylium dyes and 100 nm gold nanoparticles produce exceptional SERS signals with picomolar detection limits obtained at this extremely red-shifted and eye-safe laser excitation
    corecore