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Abstract

The morphology and spectral absorption characteristics of the retinal photoreceptors in the southern hemisphere
lampreyGeotria australis(Agnatha) were studied using light and electron microscopy and microspectrophotometry.
The retinae of both downstream and upstream migrants ofGeotria contained two types of cone photoreceptor and
one type of rod photoreceptor. Visual pigments contained in the outer segments of these three photoreceptor types
had absorbance spectra typical of porphyropsins and with wavelengths of maximum absorbance (downstream0
upstream) at 6100616 nm (long-wavelength-sensitive cone, LWS), 5150515 nm (medium-wavelength-sensitive cone,
MWS), and 5060500 nm (medium-wavelength-sensitive rod). A “yellow” photostable pigment was present in the
myoid region of all three types of photoreceptor in the downstream migrant. The same short-wavelength-absorbing
pigment, which prevents photostimulation of the beta band of the visual pigment in the outer segment, was present
in the rods and LWS cones of the upstream migrant, but was replaced by a large transparent ellipsosome in the
MWS cones. Using microspectrophotometric and anatomical data, the quantal spectral sensitivity of each
photoreceptor type was calculated. Our results provide the first evidence of a jawless vertebrate, represented today
solely by the lampreys and hagfishes, with two morphologically and physiologically distinct types of cone
photoreceptors, in addition to a rod-like photoreceptor containing a colored filter (a cone-like characteristic). In
contrast, all other lampreys studied thus far have either (1) one type of cone and one type of rod, or (2) a single
type of rod-like photoreceptor. The evolution or retention of a second type of cone in adultGeotria is presumably
an adaptation to life in the brightly lit surface waters of the Southern Ocean, where this species lives during the
marine phase of its life cycle. The functional significance of the unique visual system ofGeotria is discussed in
relation to its life cycle and the potential for color vision.
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Introduction

Lampreys and hagfishes are the sole survivors of the very early
agnathan (jawless) stage in vertebrate evolution (Hardisty, 1982).
Recent studies have shown that lampreys, or their very close
relatives, had already evolved by the lower Cambrian period [ca.
540 million years ago (Shu et al., 1999)]. Although lamprey eyes
possess several primitive characteristics not found in jawed
(gnathostomatous) fishes, their structure still conforms to the basic
vertebrate plan (Duke-Elder, 1958; Land & Nilsson, 2002). While
there has been some disagreement as to the precise identity of the

complement of photoreceptors within the lamprey retina, it is now
generally accepted that the retina of the northern hemisphere
lampreys contains one type of rod and one type of cone photo-
receptor. This conclusion is based on morphological (Walls, 1928;
Yamada & Ishikawa, 1967; Öhman, 1971, 1976; Stell, 1972;
Holmberg & Öhman, 1976; Holmberg, 1977; Dickson & Graves,
1979, 1982; Tonosaki et al., 1989), immunohistochemical (Negishi
et al., 1987; Ishikawa et al., 1987), cytochemical (Ishikawa et al.,
1989), spectral (Crescitelli, 1956, 1972; Govardovskii & Lycha-
kov, 1984; Harosi & Kleinschmidt, 1993), biochemical (Wald,
1942, 1957), and electrophysiological (Holmberg et al., 1977;
Govardovskii & Lychakov, 1984) studies of two genera of the
northern hemisphere lampreys (PetromyzonandLampetra). Inter-
estingly, however, the rod photoreceptors appear to be capable of
operating under light levels similar to that of cones (Govardovskii
& Lychakov, 1984).

Address correspondence and reprint requests to: Shaun P. Collin,
Department of Anatomy and Developmental Biology, School of Biomed-
ical Sciences, The University of Queensland, Brisbane 4072, Queensland,
Australia. E-mail: s.collin@uq.edu.au

Visual Neuroscience(2003),20, 119–130. Printed in the USA.
Copyright © 2003 Cambridge University Press 0952-5238003 $16.00
DOI: 10.10170S0952523803202030

119



The wavelength of maximum absorbance (lmax) of the single
type of cone photoreceptor in upstream migrants ofLampetra
fluviatilis (Govardovskii & Lychakov, 1984) andPetromyzon ma-
rinus (Harosi & Kleinschmidt, 1993) lies at 555 nm and 600 nm,
respectively. Thelmax for the rod photoreceptor lies at 517 nm in
L. fluviatilis and 525 nm inP. marinus.

The southern hemisphere lampreyG. australis, the sole repre-
sentative of the southern hemisphere family Geotriidae (Potter,
1980), is anadromous. Fully metamorphosed young adults ofG.
australismigrate downstream to the sea (Potter et al., 1980), where
they feed parasitically by attaching themselves to fish and extract-
ing blood and0or muscle tissue from their hosts (Potter & Hilliard
1987). During the parasitic phase,G. australisfeeds in the brightly
lit surface waters and increases in length from about 75–640 mm,
after which it reenters rivers and takes about 15–16 months to
migrate to its upstream spawning grounds (Hardisty & Potter
1971; Potter & Hilliard 1987).

Recent ultrastructural studies have demonstrated that down-
stream migrants of the southern hemisphere lampreyG. australis
possess a retina that contains two distinct types of cone and a
single type of rod (Collin et al., 1999), a finding consistent with
that of Walls (1942) rather than Meyer-Rochow and Stewart
(1996). The two cone types inG. australis(designated C1 and C2)
are morphologically very similar and, due to the presence of a
pyramid-shaped pedicle at their terminals (in contrast to the rod
spherules), the sclerad location of their nuclei within the outer
nuclear layer (ONL) and their tapered outer segments are consid-
ered to be similar to gnathostomatous cones (Collin et al., 1999).
These two cone-like photoreceptors share many features with the
cone photoreceptors of holarctic lampreys (Collin et al., 1999).
However, the size, shape, and staining characteristics of the mito-
chondria within their inner segment and the presence of an accu-
mulation of spherical to ovoid-shaped deposits of secretory material
bound within the endoplasmic reticulum (refractile bodies) of the
myoid distinguish both types of cone inG. australisfrom the cone
of the northern hemisphere lampreys. Without further morpholog-
ical and spectral evidence, it is impossible to draw any direct
homology between either of the two cone-like photoreceptors in
G. australiswith the cone photoreceptors of the northern hemi-
sphere (holarctic) lampreys.

The rod-like photoreceptors in downstreamG. australis are
characterized by a long, cylindrical outer segment, a nucleus that
lies within the vitread region of the ONL and a spherical terminal
containing up to three synaptic ribbons (Collin et al., 1999). These
morphological features are essentially identical to those of the
rod-like photoreceptors found in the eyes of the holarctic lampreys
Ichthyomyzon unicuspis(S. P. Collin, unpublished data),Petromy-
zon marinus(Dickson & Graves, 1979; 1982),Lampetra fluviatilis
(Öhman, 1971, 1976; Holmberg & Öhman, 1976; Holmberg,
1977),Lampetra tridentata(Stell, 1972; S. P. Collin & I. C. Potter,
unpublished data),Lampetra lamottenii(Walls, 1928), andLam-
petra japonica(Yamada & Ishikawa, 1967; Tonosaki et al., 1989).
Therefore, the rod receptors inG. australismay be homologous to
the rod receptors described for holarctic lampreys but further
evidence is required to substantiate this conclusion.

The aim of this study was to (1) determine the spectral absorp-
tion characteristics of the visual pigments and intracellular spectral
filters present in the photoreceptors ofG. australisduring both
their downstream and upstream migration, (2) identify any mor-
phological or physiological homologies between these receptors
and those of holarctic lampreys, and (3) discuss the possible
functional significance of the development of a second type of

cone photoreceptor in the context of the visual ecology ofG.
australisand the potential for color vision.

Methods

Nine downstream migrating (75–110 mm in total length) and nine
upstream migrating (560–640 mm in total length, Figs. 1A & 1B)
adults ofG. australis(Geotriidae, Agnatha) were collected from
streams and rivers in south-western Australia using an electric fish
shocker. All individuals were maintained in laboratories in either
Perth or Brisbane, where temperature and light0dark regimes
paralleled those in the field. The animals were kept at 178 C under
a 12-h light012-h dark cycle, mimicking, as much as possible, the
environmental conditions in which the animals were captured, for
example, providing a suitable substrate for the burrowing down-
stream migrants. Both downstream and upstream migrants were
examined as soon as possible after capture (less than 8 weeks).

Microscopy

Following an overdose of methane tricaine sulfonate salt (MS 222,
1:2000) under the ethical guidelines of the National Health and
Medical Research Council of Australia, ten individuals (5 down-
stream and 5 upstream) were sacrificed for light microscopical and
ultrastructural characterization of the photoreceptor types. The
technique closely follows that of Collin et al. (1999), where tissue
was fixed in 2% paraformaldehyde, 2.5% glutaraldehyde in 0.1 M
cacodylate buffer (pH, 7.4), and embedded in araldite before being
sectioned on an LKB rotary ultramicrotome. Ultrathin sections
stained with lead citrate and uranyl acetate were examined on
either a Phillips 410 or a Phillips CM10 transmission electron
microscope set at 80 kV.

Microspectrophotometry

Four dark-adapted individuals of both downstream and upstream
migrants of G. australis were euthanased with an overdose of
MS222 (1:2000) and their eyes removed. Retinae were dissected
out under infrared illumination, cut into small pieces (ca. 1–2 mm2),
and mounted in a solution of 275 mOsmol kg21 phosphate-
buffered saline containing 10% dextran. Absorbance spectra of
individual photoreceptor outer segments were measured using a
single-beam, wavelength-scanning, computer-controlled microspec-
trophotometer (MSP), as described by Shand et al. (2002). The
absorbance spectra were analyzed using the method of Govar-
dovskii et al. (2000) to estimate thelmax of the visual pigment.
Spectra were fitted with both A1 and A2-based visual pigment
templates (Govardovskii et al., 2000) to establish which type of
chromophore was present. Measured outer segments were bleached
with full spectrum white-light in order to confirm that the visual
pigments were photolabile. Yellow pigments located in the inner
segment and myoid were also examined using MSP and were
found to be photostable after attempts to bleach the pigment were
unsuccessful. These pigments even failed to bleach after hours of
bright-field illumination of fixed and unfixed retinae.

Calculation of photoreceptor spectral sensitivities

Relative quantal spectral sensitivities were calculated for each
photoreceptor type in both downstream and upstream migrants.
Visual pigment spectral absorptance was modelled using math-
ematical templates of the appropriatelmax (Govardovskii et al.,
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2000). The specific absorbance used for the visual pigment was
0.015 mm21 for all cells (Rodieck, 1973) and lengths of outer
segments are given in Table 1. Mean absorptance spectra (fitted
with an 11 point unweighted running average) of the regions of the
inner segments occupied by the screening pigment or ellipsosome
were corrected for the fact that microspectrophotometric measure-
ments were made transversely not axially (dimensions listed in
Table 1).

Results

Light microscopy and transmission electron microscopy were used
to examine the ultrastructure of the three photoreceptor types in
upstream migrants ofG. australis (previously identified in the
downstream migrants, Collin et al., 1999) and to characterize them
as either rods or cones. Microspectrophotometric analysis of the
visual pigments and various intracellular inclusions was also per-
formed in order to predict the spectral sensitivity of each of the

three retinal receptor types in both downstream and upstream
migrants. All visual pigment absorbance spectra were best-fitted
by an A2 (porphyropsin) template, suggesting that the chromo-
phore used by both downstream and upstream migrants was
3,4-didehydroretinal.

Long-wavelength-sensitive cones (C1)

At the commencement of the marine phase ofG. australis, the first
cone type (C1) has a tapered outer segment, an ellipsoid with
densely packed mitochondria, a myoid containing aggregations of
distended endoplasmic reticula, and a pedicle-shaped (cone-like)
synaptic terminal with up to five synaptic ribbons (Collin et al.,
1999; Fig. 1C). Apart from a marked increase in size, new mor-
phological data reveals that the C1 cone in the fully grown adult,
which has reentered rivers on its spawning run, is the same as that
described at the beginning of the marine phase (Figs. 1C, 2A, &
3A). However, this C1 cone increases in length (256 3.2 mm to

Fig. 1. (A) Upstream migrant of the southern hemisphere lampreyGeotria australis. Note the blue0silver counter shading, typically
found in aquatic surface dwellers. Scale bar5 30 mm. (B) Suctorial disc of the upstream migrant that is used for attachment to its hosts
during the marine phase of its life cycle. Scale bar5 10 mm. (C, D) Light micrographs of 1-mm (transverse) sections of the retina
stained with toluidine blue in downstream (C) and upstream (D) migrants photographed at the same magnification and thus showing
the marked changes in both photoreceptor size and morphology. Arrowheads in (C) depict rods. C1: long-wavelength-sensitive cone;
C2: medium-wavelength-sensitive cone; onl: outer nuclear layer; ph: photoreceptor layer; R: medium-wavelength-sensitive rod; and
rpe: retinal pigment epithelium. Scale bars5 15 mm.
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58.96 5.7mm) and width (3.36 0.2mm to 11.26 2.7mm) during
the period between its downstream and upstream migration (Figs. 1C
& 1D). In unfixed retinae of both downstream and upstream
migrants, the receptor regions occupied by the distended endoplas-
mic reticula in the myoid contain short-wavelength-absorbing
pigments (Figs. 2A & 2D). The pigment in the downstream phase
appears yellow, while that in the upstream phase appears more
orange (Figs. 2A & 2D). Microspectrophotometry (MSP) demon-
strates that both of these pigments are photostable and absorb
strongly below about 550 nm (Figs. 4C & 4G). Although not
examined biochemically, it is thought that these colored filters may
comprise the same pigment in both migrant phases but occurring in
different concentrations, as has been found for the orange and red
oil droplets in the avian retina (Goldsmith et al., 1984). The mean
wavelengths of maximum absorbance (lmax) of the photosensitive
visual pigments in the C1 cones of downstream and upstream
migrants were very similar at 610 nm and 616 nm, respectively
(Figs. 4A, 4B, & 4E–4F; Table 1). When the quantal spectral
sensitivity is calculated for the whole photoreceptor (Figs. 4D &
4H), the comparable peaks at 614 nm and 618 nm show that the
photostable pigments within the myoid would simply prevent
photostimulation of the beta-band of the visual pigment, as is the
case with some other short-wavelength-absorbing spectral filters
(Muntz, 1973).

Medium-wavelength-sensitive cones (C2)

In the downstream migrants, the second type of cone photoreceptor
(C2) has a tapered outer segment, a pedicle-shaped receptor ter-
minal, and a myoid containing a yellow photostable pigment
(Figs. 1C & 2B). The outer segment contains a photosensitive
visual pigment with a meanlmax at 515 nm (Figs. 5A & 5B).
Although the spectral absorption characteristics of the visual pig-

ment remain unchanged in upstream migrants (Figs. 5E & 5F), the
yellow photostable pigment (Fig. 5C) has been replaced by a large
unpigmented ellipsosome (Figs. 1D, 2E, 3B, & 5G). The devel-
opment of the ellipsosome in the upstream phase coincides with an
increase in both length (256 3.7 to 60.16 5.1 mm) and width
(2.5 6 0.5 to 11.26 2.7 mm) (Figs. 1C & 1D). In the upstream
phase, the C2 receptors also possess a tapered outer segment and
a pedicle-shaped receptor terminal but, unlike the situation in the
downstream phase, the endoplasmic reticula are not distended and
the yellow pigment in the myoid has been lost and gives way to the
large, essentially transparent, ellipsosome of mitochondrial origin.
MSP confirms the lack of any pigment within the ellipsosome
(Fig. 5G), which may function to focus light onto the outer
segment rather than providing the capacity for any spectral filter-
ing. However, in contrast to the C1 cone, the presence of the
yellow screening pigment within the downstream C2 myoid shifts
the calculated peak spectral sensitivity of the cell to a wavelength
(543 nm) longer than thelmax of the visual pigment.

Medium-wavelength-sensitive rods

As is typical of other vertebrate rod photoreceptors, the rod of the
downstream migrant ofG. australiscontains a cylindrical outer
segment with only a moderate taper and an ellipsoid containing
numerous mitochondria (Fig. 1C). Like the C1 cone, the ellipsoid
is filled with distended endoplasmic reticula that contain a pale
yellow pigment (Fig. 2C). During the period between the down-
stream and upstream migrations, the rods increase in both length
(156 0.3mm to 55.661.9mm) and width (1.76 0.3mm to 4.26
1.5 mm) (Figs. 1C, 1D, 2C, 2F, & 3C). The rod visual pigments
have a meanlmax at 506 and 500 nm in the downstream and
upstream migrants, respectively, and during both migrations, the
myoid region contains low concentrations of a short-wavelength-

Table 1. Summary of the microspectrophotometric measurements of the three photoreceptor types in both
downstream and upstream migrant phasesa

DownstreamGeotria australis
LWS cone

(C1)
MWS cone

(C2) Rod

Mean prebleachlmax (nm) 610.06 9.7 515.46 5.9 506.16 4.9
lmax of mean prebleach spectrum (nm) 611.1 516.8 507.0
Mean difference spectrumlmax (nm) 605.76 12.5 519.46 6.3 513.26 3.5
lmax of mean difference spectrum (nm) 610.5 521.5 511.7
Number of cells 7 5 2
Mean transverse measured absorbance atlmax of difference spectrum 0.0116 0.005 0.0126 0.005 0.0096 0.006
Calculated quantal spectral sensitivity 614 552 507

UpstreamGeotria australis
LWS cone

(C1)
MWS cone

(C2) Rod

Mean prebleachlmax (nm) 616.46 4.7 515.26 3.0 499.76 6.4
lmax of mean prebleach spectrum (nm) 616.7 515.0 500.8
Mean difference spectrumlmax (nm) 615.36 6.6 517.76 3.8 503.26 5.8
lmax of mean difference spectrum (nm) 616.4 517.4 506.9
Number of cells 5 20 7
Mean transverse measured absorbance atlmax of difference spectrum 0.0236 0.006 0.0316 0.012 0.0146 0.004
Calculated quantal spectral sensitivity 618 517 503

aQuantal spectral sensitivity was calculated by modelling the absorptance of the visual pigment in the outer segment and the spectral
transmittance of the photostable pigment located in the myoid region (see Methods). Values for the mean prebleach and difference
spectralmax and mean transverse measured absorbances are6 one standard deviation.
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absorbing “yellow” photostable pigment that absorbs wavelengths
below about 550 nm (Fig. 6). In both the downstream and up-
stream migrants, absorption by the yellow myoid pigment does not
cause an appreciable shift in the calculated peak spectral sensitiv-
ity of the cell from that conferred by the visual pigment (Fig. 6).

Discussion

Ultrastructural and microspectrophotometric examinations of the
retinal photoreceptors in downstream and upstream migrating adults
of the southern hemisphere lampreyG. australisshow that the
retinae of both life cycle stages contain two types of cone and one
type of rod. Each cone photoreceptor type has a different spectral

sensitivity, strongly suggesting the possibility of a cone-based
color vision system.

On the basis of the goodness-of-fit of the mean absorbance
spectra to mathematical visual pigment templates (Govardovskii
et al., 2000), each of the three visual pigments in both the down-
stream and upstream migrants ofG. australis is a porphyropsin
(where the chromophore conjugated with the opsin protein is 3,
4-didehydroretinal, an aldehyde of vitamin A2). The possession of
an A2-based visual pigment byG. australisat the time this species
enters the sea contrasts with the situation in the comparable stage
of Petromyzon marinusand in marine teleosts and elasmobranchs,
which, generally, have vitamin A1-based visual pigments (rhodop-
sins) (Bowmaker, 1990 but see Cummings & Partridge, 2001).

Fig. 2. Morphological characterization of the three
types of photoreceptors in downstream (A–C) and
upstream (D–E) migrants ofGeotria australisphoto-
graphed using differential interference contrast (Nomar-
ski) optics in unfixed preparations. (A, D) The C1
cone. (B, E) The C2 cone. (C, F) The rod. Note the
dense aggregations of yellow and orange pigment (p)
in the myoid regions. The ellipsoid region (e) also
contains low concentrations of pigment. The pigment
in the myoid region of the C2 cone in downstream
migrants (B) is replaced by a large ellipsosome (es) in
the upstream migrants (E). n: nucleus; and os: outer
segment. Scale bars: 3mm (A); 2 mm (B); 2 mm (C);
6 mm (D); 4 mm (E); and 2mm (F).
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Interestingly, during the upstream migration ofP. marinus, the
chromophore becomes A2-based (Wald, 1942; Harosi & Klein-
schmidt, 1993), as is typically the case in freshwater teleosts
(Bowmaker, 1990). In contrast, the chromophore of the upstream
migratingLampetra fluviatilisis A1-based, which almost certainly
accounts for the short wavelength shiftedlmax(555 nm) of its cone
visual pigment compared toP. marinus(600 nm) and the C1 cone
of G. australis (6100616 nm in the downstream and upstream
migrants, respectively). When considered together with the finding
of the entire complement of photoreceptors possessing visual
pigments incorporating a chromophore based on vitamin A2 in the
anadromous white sturgeonAcipenser transmontanus, it appears
that migration between freshwater and saltwater may not be suf-
ficient to induce a paired A10A2 visual pigment system (Whitmore
& Bowmaker, 1989; Sillman et al., 1995).

Thelmax of the visual pigments in the C1 cone ofG. australis
(610 and 616 nm in the downstream and upstream migrants,
respectively) and the single cone types ofP. marinus and L.
fluviatilis lie within the range of thelmax for the visual pigments
in the long-wavelength-sensitive (LWS) cones of freshwater gna-
thostomatous fishes (Bowmaker, 1990). Therefore, thelmax of the
visual pigment of the C2 cone inG. australis(515 and 515 nm in
the downstream and upstream migrants, respectively) falls outside
the range for LWS cones in freshwater fishes and is more typical
of a MWS cone.

The lmax for the rod pigment (506 and 500 nm in the down-
stream and upstream migrants, respectively) ofG. australisoccurs

at a shorter wavelength than the visual pigments in the rod
photoreceptors of upstream migrants of the northern hemisphere
lampreysL. fluviatilis (517 nm, Govardovskii & Lychakov, 1984)
andP. marinus(525 nm, Harosi & Kleinschmidt 1993). The rod
lmax for G. australis is thus more similar to the rodlmax of
gnathostomatous vertebrates, especially marine teleosts (Bow-
maker, 1990). Another interesting feature of the rod photoreceptors
in Geotria is the yellow photostable pigment found in the inner
segment. While spectral filters occur in the cone photoreceptors of
some jawed fishes, reptiles, birds, and mammals (albeit packaged
differently), this is the first report of an intracellular spectral filter
in a rod photoreceptor. This raises the question of whether the rods
are operating under light levels similar to those of the cone
photoreceptors, as has been suggested to be the case in the
northern hemisphere lampreyLampetra fluviatilis(Govardovskii
& Lychakov, 1984).

Why shouldG. australishave retained or evolved a second
cone type which, unlike the other cone of this species and the
single cone of other lamprey species, is medium wavelength
sensitive (MWS)? SinceG. australis spends only a short time
migrating downstream, travelling at night, and not feeding, the
characteristics of the retina of downstream migrants presumably
represent a preadaptation for life in the ocean. During its marine
trophic phase,G. australis is particularly susceptible to avian
predation. This view is based on the very large numbers of adult
G. australisthat are caught by the grey-headed albatrossDiomedia
chrysoma(Potter et al., 1979). Since albatrosses feed in an average
water depth of only 0.74 m (Huin & Prince, 1997), the adults
of G. australismust spend much of their day in the well-lit sur-
face marine waters of the Southern Ocean, in contrast to species
such asP. marinus, which often occupy deep waters (Beamish,
1980; Halliday, 1991). Consequently, it may be advantageous for
G. australisto be able to detect visually not only prey but avian
predators in surface waters, which, during the austral summer,
remain brightly lit for almost 24 h.

Having two cone types, one of which is LWS and the other
MWS (Fig. 7), may increase the ability to detect the achromatic
contrast (brightness) between objects observed against background
illumination and thus improve the ability ofG. australisto detect
the silhouettes of avian predators against the sky or fish against the
water (Lythgoe, 1979). Sillman et al. (1999) have suggested a
similar function for the multiple cone pigments in the shovelnose
sturgeonScaphirhynchus platorynchusand the paddlefishPoly-
odon spathula, which both live in an environment where light of
all wavelengths is limited. In brightly lit water, Maximov (2000)
has suggested that selection pressures to overcome the visual
problems caused by light flicker at the surface of the ocean may
have led to the evolution of two such types of cone visual pigment
as long ago as 500 million years.

It is also possible that the outputs from the two cones are
compared by the visual system of this lamprey in order to analyze
chromatic (color) information in the environment in addition to
brightness. At least two types of horizontal cells, which are the first
level of visual processing in the retina, have been revealed ultra-
structurally (Collin et al., 1999) and immunohistochemically (S. P.
Collin and M. Kalloniatus, unpublished data) inG. australis, and
so the neural substrate for opponent interactions between different
photoreceptors exists. Moreover, both types of cone (and the rods)
are known, from topographical analysis, to be distributed through-
out the entire retina with approximately three times more rods than
cones (the numbers of C1 and C2 cones are comparable, K.
Wallace and S. P. Collin, unpublished data). Of course, if the rod

Fig. 3.Ultrastructural characterization of the photoreceptors in the retina of
the upstream phase inGeotria australis. (A) C1 cone. (B) C2 cone. (C)
Rod. Note the dense packing of distended endoplasmic reticula (er) in the
myoid region of both the C1 cone and rod photoreceptors. The densely
stained inner segment of the C2 cone possesses a developing ellipsosome
(es) surrounded by mitochondria (m). n: nucleus; and os: outer segment.
Scale bars5 4 mm.
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Fig. 4. Spectral characteristics of the LWS (C1) cone in downstream (A–D) and upstream (E–H) migrants ofGeotria australis.
(A, E) Prebleach and postbleach absorbance spectra. Filled squares indicate the mean prebleach absorbance spectrum fitted with the
template spectrum of Govardovskii et al. (2000) (thick line). The open circles represent the mean postbleach absorbance spectrum fitted
with an unweighted running average (thin line). (B, F) Mean difference spectra (filled squares) fitted with a template spectrum of
Govardovskii et al. (2000) (thick line). (C, G) Mean absorptance spectrum of the photostable pigment in the myoid region fitted with
an unweighted running average (smooth line). (D, H) The relative quantal spectral sensitivity of the whole photoreceptor for the
downstream (lmax5 610 nm) and upstream (lmax5 616 nm) migrants, based on both the visual pigment and screening pigment spectra
and the dimensions of the inner and outer segments.
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Fig. 5. Spectral characteristics of the MWS (C2) cone in downstream (A–D) and upstream (E–H) migrants ofGeotria australis.
(A, E) Prebleach and postbleach absorbance spectra. Filled squares indicate the mean prebleach absorbance spectrum fitted with the
template spectrum of Govardovskii et al. (2000) (thick line). Open circles represent the mean postbleach absorbance spectrum fitted
with an unweighted running average (thin line). (B, F) Mean difference spectra (filled squares) fitted with a template spectrum of
Govardovskii et al. (2000) (thick line). (C, G) Mean absorptance spectrum of the photostable pigment in the myoid region fitted with
an unweighted running average (smooth line). Note high concentration of pigment in the myoid region of the downstream migrant cuts
off short wavelengths below approximately 550 nm and is replaced, in the upstream migrant, by an ellipsosome, which contains no
pigment. (D, H) The relative quantal spectral sensitivity of the whole photoreceptor of downstream (lmax 5 515 nm) and upstream
(lmax5 515 nm) migrants based on both the visual pigment and screening pigment spectra and the dimensions of the inner and outer
segments. The myoidal screening pigment in the downstream migrant shifts the peak spectral sensitivity from 515 nm to 543 nm.
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Fig. 6. Spectral characteristics of the MWS rod in the downstream (A–D) and upstream (E–H) migrants ofGeotria australis.
(A, E) Prebleach and postbleach absorbance spectra. Filled squares indicate the mean prebleach absorbance spectrum fitted with the
template spectrum of Govardovskii et al. (2000) (thick line). Open circles represent the mean postbleach absorbance spectrum fitted
with an unweighted running average (thin line). (B, F) Mean difference spectra (filled squares) fitted with a template spectrum of
Govardovskii et al. (2000) (thick line). (C, G) Mean absorptance spectrum of the photostable pigment in the myoid region fitted with
an unweighted running average (smooth line). Note lower concentration of pigment in the myoid region in both stages. (D, H) The
relative quantal spectral sensitivity of the whole photoreceptor for the downstream (lmax 5 506 nm) and upstream (lmax 5 500 nm)
migrants based on both the visual pigment and screening pigment spectra and the dimensions of the inner and outer segments.
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photoreceptors ofG. australisare also functioning under the same
light levels as the cones (as inLampetra fluviatilis; Govardovskii
& Lychakov, 1984) there is the potential for a trichromatic, rather
than simply a dichromatic, color vision system. Behavioral studies
must be performed to investigate this possibility.

The presence of a large ellipsosome within the ellipsoid region
of the C2 (MWS) cones in upstream, but not downstream, mi-
grants ofG. australis, which is the first report of such a structure
in lampreys, suggests that the need for spectral filtering of short
wavelengths decreases markedly during the adult phase of this
species. Described by Franz (1932) as false-oil droplets, these
large globules of mitochondrial origin have been previously re-
corded in cone photoreceptors in a number of vertebrate classes,
including teleosts (Walls, 1942; Ishikawa & Yamada, 1969; Bor-
wein & Hollenberg, 1973; Kunz & Regan, 1973; Kunz & Wise,
1973; Anctil & Ali, 1976; MacNichol et al., 1978; Nag & Bhatta-
charjee, 1989, 1995; Nag, 1995) and mammals (Knabe et al.,
1997) including primates (Bowmaker, 1991). Although the ellip-
sosomes in upstream migrants ofG. australisdo not act as spectral
filters, similarly large mitochondria or ellipsosomes in fish have
been shown to possess a spectral absorbance that is characteristic
of a dense heme pigment, similar to that of reduced cytochrome c
(Avery & Bowmaker, 1982; Bowmaker, 1990). This heme pigment
has been found to absorb light within a narrow band in the violet
region of the spectrum (around 415 nm), thereby reducing to
shorter wavelengths the spectral sensitivity of the visual pigments
housed within the outer segments (MacNichol et al., 1978; Avery

& Bowmaker, 1982; Bowmaker, 1990). The loss by upstream
migrants ofG. australisof the yellow screening pigment in the C2
photoreceptor and its replacement by a transparent ellipsosome is
consistent with the fact that these individuals migrate at night. The
spherical C2 ellipsosome may play a role in trapping photons and
focusing them onto the visual pigment in the outer segment,
thereby enhancing visual sensitivity (Young & Martin, 1984). The
subsequent loss of the screening pigment by the MWS photorecep-
tor in the upstream migrant also shifts its spectral sensitivity to
shorter wavelengths to align closely with thelmax of the rod
photoreceptor (Fig. 7). Physiological analysis is required to indi-
cate the range of light levels in which the rods are operating and
whether the close proximity of the spectral sensitivity curves of the
MWS receptor and the rod, and the change in the relative spacing
of the three receptor sensitivities, decreases this species’ capacity
for color discrimination.

Among lampreys, the yellow photostable pigment found in all
three photoreceptor cell types is unique toG. australis, and
presumably evolved in response to the need to filter out the
potentially damaging short-wavelength light to which the eye is
constantly being subjected when this species is in surface marine
waters. Interestingly, a type of single cone in the ornate lizard
Ctenophorous ornatus, which also inhabits a brightly lit environ-
ment, has recently been found to possess a similar yellow pigment
(Barbour et al., 2002). Based on the spectral absorptance proper-
ties of the yellow pigments inG. australis, we suspect that they
may be carotenoids and similar to the screening pigments identi-

Fig. 7. Summary of the calculated photoreceptor quantal spectral
sensitivity curves for the three types of photoreceptors in down-
stream (A) and upstream (B) migrants ofGeotria australis. The
effect of the myoidal screening pigment on spectral sensitivity is
greatest in the medium-wavelength-sensitive (C2) cones of the
downstream migrants [and thus presumably of marine phase ani-
mals] where it shifts the spectral sensitivity of the cell to longer
wavelengths (peak 543 nm) compared to thelmax of the visual
pigment (515 nm), a value intermediate between the rod and the
long-wavelength-sensitive (C1) cone.

128 S.P. Collin et al.



fied in the cornea and lens of a number of species that frequent the
upper regions of the water column (Douglas & Marshall, 1999;
Siebeck & Marshall, 2001; Collin & Collin, 2001). The removal of
short-wavelength light would also prevent photostimulation of the
beta-band of the visual pigments (potentially improving wave-
length discrimination) and increase acuity by absorbing short-
wavelength light scattered by the atmosphere or ocular structures
of the eye (Muntz, 1973).

Whether increasing the range of wavelengths available for
cone-based vision and0or the need to sample the visual world
chromatically was the selective force behind the evolution (or
retention) of a second cone type byG. australis is not known.
However, the implications of our findings suggest that the early
vertebrates may hold important clues to the selection pressure(s)
underlying the plasticity of photoreception and the evolution of
color vision. The molecular genetic basis of photoreception in
lampreys is now the subject of intense study in our laboratory.
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