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Abstract

The morphology and spectral absorption characteristics of the retinal photoreceptors in the southern hemisphere
lampreyGeotria australis(Agnatha) were studied using light and electron microscopy and microspectrophotometry.
The retinae of both downstream and upstream migran@Geaiftria contained two types of cone photoreceptor and

one type of rod photoreceptor. Visual pigments contained in the outer segments of these three photoreceptor types
had absorbance spectra typical of porphyropsins and with wavelengths of maximum absorbance (doywnstream
upstream) at 6116 nm (long-wavelength-sensitive cone, LWS), BE nm (medium-wavelength-sensitive cone,
MWS), and 508500 nm (medium-wavelength-sensitive rod). A “yellow” photostable pigment was present in the
myoid region of all three types of photoreceptor in the downstream migrant. The same short-wavelength-absorbing
pigment, which prevents photostimulation of the beta band of the visual pigment in the outer segment, was present
in the rods and LWS cones of the upstream migrant, but was replaced by a large transparent ellipsosome in the
MWS cones. Using microspectrophotometric and anatomical data, the quantal spectral sensitivity of each
photoreceptor type was calculated. Our results provide the first evidence of a jawless vertebrate, represented today
solely by the lampreys and hagfishes, with two morphologically and physiologically distinct types of cone
photoreceptors, in addition to a rod-like photoreceptor containing a colored filter (a cone-like characteristic). In
contrast, all other lampreys studied thus far have either (1) one type of cone and one type of rod, or (2) a single
type of rod-like photoreceptor. The evolution or retention of a second type of cone inGehiitia is presumably

an adaptation to life in the brightly lit surface waters of the Southern Ocean, where this species lives during the
marine phase of its life cycle. The functional significance of the unique visual systéeadafiais discussed in

relation to its life cycle and the potential for color vision.
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Introduction complement of photoreceptors within the lamprey retina, it is now

Lampreys and hagfishes are the sole survivors of the very earlfenerally accepted that the retina of the northern hemisphere

. . . . ampreys contains one type of rod and one type of cone photo-
agnathan (jawless) stage in vertebrate evolution (Hardisty, 1982 ec:ptc?/r This conclusionyiz based on morpholggical (Walls p1928_
Recent studies have shown that lampreys, or their very Clos?amada. & Ishikawa. 1967° Ohman. 1971 1976 Stell ’1972,’

relatives, had already evolved by the lower Cambrian perdad [ " . .,
540 million years ago (Shu et al., 1999)]. Although lamprey eyesHOImberg & Ohman, 1976; Holmberg, 1977; Dickson & Graves,

o e L7 d1979, 1982; Tonosaki et al., 1989), immunohistochemical (Negishi
possess several primitive characteristics not found in jawe

) . . et al., 1987; Ishikawa et al., 1987), cytochemical (Ishikawa et al.,
(gnathostomatous) fishes, their structure still conforms to the ba3|3989) spectral (Crescitelli, 1956, 1972; Govardovskii & Lycha-
vertebrate plan (Duke-Elder, 1958; Land & Nilsson, 2002). While  SP ' ' ; y

there has been some disagreement as to the precise identity of tﬁov, 1984; Harosi & Kleinschmidt, 1993), biochemical (Wald,
9 P y 342, 1957), and electrophysiological (Holmberg et al., 1977;

Govardovskii & Lychakov, 1984) studies of two genera of the
Address correspondence and reprint requests to: Shaun P. Colli northern hemisphere lampreyBgtromyzorandLampetrg. Inter-
Department of Anatomy and Developmental Biology, School of Biomed-%sungly' however, the rod photoreceptors appear to be capable of

ical Sciences, The University of Queensland, Brisbane 4072, Queenslan@Perating under light levels similar to that of cones (Govardovskii
Australia. E-mail: s.collin@ug.edu.au & Lychakov, 1984).
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The wavelength of maximum absorbancg,§,) of the single  cone photoreceptor in the context of the visual ecologyGof
type of cone photoreceptor in upstream migrantsLampetra  australisand the potential for color vision.
fluviatilis (Govardovskii & Lychakov, 1984) anBetromyzon ma-
rinus (Harosi & Kleinschmidt, 1993) lies at 555 nm and 600 nm
respectively. The\ox for the rod photoreceptor lies at 517 nm in
L. fluviatilis and 525 nm inP. marinus Nine downstream migrating (75-110 mm in total length) and nine

The southern hemisphere lampr@y australis the sole repre-  upstream migrating (560—640 mm in total length, Figs. 1A & 1B)
sentative of the southern hemisphere family Geotriidae (Potteradults of G. australis(Geotriidae, Agnatha) were collected from
1980), is anadromous. Fully metamorphosed young adults.of streams and rivers in south-western Australia using an electric fish
australismigrate downstream to the sea (Potter et al., 1980), whershocker. All individuals were maintained in laboratories in either
they feed parasitically by attaching themselves to fish and extractPerth or Brisbane, where temperature and lightk regimes
ing blood andor muscle tissue from their hosts (Potter & Hilliard paralleled those in the field. The animals were kept &t tinder
1987). During the parasitic phase, australisfeeds in the brightly — a 12-h light/12-h dark cycle, mimicking, as much as possible, the
lit surface waters and increases in length from about 75—-640 mnenvironmental conditions in which the animals were captured, for
after which it reenters rivers and takes about 15-16 months t@xample, providing a suitable substrate for the burrowing down-
migrate to its upstream spawning grounds (Hardisty & Potterstream migrants. Both downstream and upstream migrants were
1971; Potter & Hilliard 1987). examined as soon as possible after capture (less than 8 weeks).

Recent ultrastructural studies have demonstrated that down-
stream migrants of the southern hemisphere lam@egustralis
possess a retina that contains two distinct types of cone and
single type of rod (Collin et al., 1999), a finding consistent with Following an overdose of methane tricaine sulfonate salt (MS 222,
that of Walls (1942) rather than Meyer-Rochow and Stewart1:2000) under the ethical guidelines of the National Health and
(1996). The two cone types {@. australis(designated C1 and C2) Medical Research Council of Australia, ten individuals (5 down-
are morphologically very similar and, due to the presence of astream and 5 upstream) were sacrificed for light microscopical and
pyramid-shaped pedicle at their terminals (in contrast to the rodiltrastructural characterization of the photoreceptor types. The
spherules), the sclerad location of their nuclei within the outertechnique closely follows that of Collin et al. (1999), where tissue
nuclear layer (ONL) and their tapered outer segments are considvas fixed in 2% paraformaldehyde, 2.5% glutaraldehyde in 0.1 M
ered to be similar to gnathostomatous cones (Collin et al., 1999)cacodylate buffer (pH, 7.4), and embedded in araldite before being
These two cone-like photoreceptors share many features with theectioned on an LKB rotary ultramicrotome. Ultrathin sections
cone photoreceptors of holarctic lampreys (Collin et al., 1999).stained with lead citrate and uranyl acetate were examined on
However, the size, shape, and staining characteristics of the miteither a Phillips 410 or a Phillips CM10 transmission electron
chondria within their inner segment and the presence of an accunicroscope set at 80 kV.
mulation of spherical to ovoid-shaped deposits of secretory material
bound within the endoplasmic reticulum (refractile bodies) of the
myoid distinguish both types of cone @& australisfrom the cone
of the northern hemisphere lampreys. Without further morpholog+our dark-adapted individuals of both downstream and upstream
ical and spectral evidence, it is impossible to draw any directmigrants of G. australiswere euthanased with an overdose of
homology between either of the two cone-like photoreceptors ifVS222 (1:2000) and their eyes removed. Retinae were dissected
G. australiswith the cone photoreceptors of the northern hemi-out under infrared illumination, cut into small pieces.(1-2 mnf),
sphere (holarctic) lampreys. and mounted in a solution of 275 mOsmol Kgphosphate-

The rod-like photoreceptors in downstreda®n australis are buffered saline containing 10% dextran. Absorbance spectra of
characterized by a long, cylindrical outer segment, a nucleus thandividual photoreceptor outer segments were measured using a
lies within the vitread region of the ONL and a spherical terminal single-beam, wavelength-scanning, computer-controlled microspec-
containing up to three synaptic ribbons (Collin et al., 1999). Thesdrophotometer (MSP), as described by Shand et al. (2002). The
morphological features are essentially identical to those of thebsorbance spectra were analyzed using the method of Govar-
rod-like photoreceptors found in the eyes of the holarctic lampreyslovskii et al. (2000) to estimate thg,.x Of the visual pigment.
Ichthyomyzon unicusp({§. P. Collin, unpublished datepetromy-  Spectra were fitted with both Aand As--based visual pigment
zon marinugDickson & Graves, 1979; 1982)ampetra fluviatilis ~ templates (Govardovskii et al., 2000) to establish which type of
(Ghman, 1971, 1976; Holmberg & Ohman, 1976; Holmberg,chromophore was present. Measured outer segments were bleached
1977),Lampetra tridentatgStell, 1972; S. P. Collin & I. C. Potter, with full spectrum white-light in order to confirm that the visual
unpublished data),.ampetra lamotteni{Walls, 1928), and_am- pigments were photolabile. Yellow pigments located in the inner
petra japonica(Yamada & Ishikawa, 1967; Tonosaki et al., 1989). segment and myoid were also examined using MSP and were
Therefore, the rod receptors @ australismay be homologous to  found to be photostable after attempts to bleach the pigment were
the rod receptors described for holarctic lampreys but furtheunsuccessful. These pigments even failed to bleach after hours of
evidence is required to substantiate this conclusion. bright-field illumination of fixed and unfixed retinae.

The aim of this study was to (1) determine the spectral absorp-
tion characteristics of the visual pigments and intracellular spectra&
filters present in the photoreceptors Gf australisduring both
their downstream and upstream migration, (2) identify any mor-Relative quantal spectral sensitivities were calculated for each
phological or physiological homologies between these receptorphotoreceptor type in both downstream and upstream migrants.
and those of holarctic lampreys, and (3) discuss the possibl®isual pigment spectral absorptance was modelled using math-
functional significance of the development of a second type ofematical templates of the appropriatga.x (Govardovskii et al.,

" Methods

lgllcroscopy

Microspectrophotometry

alculation of photoreceptor spectral sensitivities
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Fig. 1. (A) Upstream migrant of the southern hemisphere lam@ewptria australis Note the blugsilver counter shading, typically

found in aquatic surface dwellers. Scale ba30 mm. (B) Suctorial disc of the upstream migrant that is used for attachment to its hosts
during the marine phase of its life cycle. Scale bat0 mm. (C, D) Light micrographs of &m (transverse) sections of the retina
stained with toluidine blue in downstream (C) and upstream (D) migrants photographed at the same magnification and thus showing
the marked changes in both photoreceptor size and morphology. Arrowheads in (C) depict rods. C1: long-wavelength-sensitive cone;
C2: medium-wavelength-sensitive cone; onl: outer nuclear layer; ph: photoreceptor layer; R: medium-wavelength-sensitive rod; and
rpe: retinal pigment epithelium. Scale barsl5 pm.

2000). The specific absorbance used for the visual pigment wathree retinal receptor types in both downstream and upstream
0.015 um~* for all cells (Rodieck, 1973) and lengths of outer migrants. All visual pigment absorbance spectra were best-fitted
segments are given in Table 1. Mean absorptance spectra (fittday an A (porphyropsin) template, suggesting that the chromo-
with an 11 point unweighted running average) of the regions of thephore used by both downstream and upstream migrants was
inner segments occupied by the screening pigment or ellipsoson&4-didehydroretinal.

were corrected for the fact that microspectrophotometric measure-

ments were made transversely not axially (dimensions listed in .

Table 1). Long-wavelength-sensitive cones (C1)

At the commencement of the marine phas&oaustralis the first

cone type (Cl) has a tapered outer segment, an ellipsoid with
densely packed mitochondria, a myoid containing aggregations of
Light microscopy and transmission electron microscopy were usedistended endoplasmic reticula, and a pedicle-shaped (cone-like)
to examine the ultrastructure of the three photoreceptor types isynaptic terminal with up to five synaptic ribbons (Collin et al.,
upstream migrants o6. australis (previously identified in the 1999; Fig. 1C). Apart from a marked increase in size, new mor-
downstream migrants, Collin et al., 1999) and to characterize therphological data reveals that the C1 cone in the fully grown adult,
as either rods or cones. Microspectrophotometric analysis of thevhich has reentered rivers on its spawning run, is the same as that
visual pigments and various intracellular inclusions was also perdescribed at the beginning of the marine phase (Figs. 1C, 2A, &
formed in order to predict the spectral sensitivity of each of the3A). However, this C1 cone increases in length 8.2 um to

Results
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Table 1. Summary of the microspectrophotometric measurements of the three photoreceptor types in both

downstream and upstream migrant phases

LWS cone MWS cone
DownstreamGeotria australis (C1) (C2) Rod
Mean prebleach nax (Nm) 610.0+ 9.7 515.4+ 5.9 506.1+ 4.9
Amax Of mean prebleach spectrum (nm) 611.1 516.8 507.0
Mean difference spectrutiiynax (Nm) 605.7+ 12.5 519.4+ 6.3 513.2+ 3.5
Amax Of mean difference spectrum (nm) 610.5 521.5 511.7
Number of cells 7 5 2
Mean transverse measured absorbance,atof difference spectrum 0.01# 0.005 0.012+ 0.005 0.009+ 0.006
Calculated quantal spectral sensitivity 614 552 507

LWS cone MWS cone
UpstreamGeotria australis (C1) (C2) Rod
Mean prebleachnax (NmM) 616.4+ 4.7 515.2+ 3.0 499.7+ 6.4
Amax Of mean prebleach spectrum (nm) 616.7 515.0 500.8
Mean difference spectruniyay (nm) 615.3+ 6.6 517.7+ 3.8 503.2+ 5.8
Amax Of mean difference spectrum (nm) 616.4 517.4 506.9
Number of cells 5 20 7
Mean transverse measured absorbance,atof difference spectrum 0.028 0.006 0.031+ 0.012 0.014+ 0.004
Calculated quantal spectral sensitivity 618 517 503

aQuantal spectral sensitivity was calculated by modelling the absorptance of the visual pigment in the outer segment and the spectral
transmittance of the photostable pigment located in the myoid region (see Methods). Values for the mean prebleach and difference
spectraimax and mean transverse measured absorbances ane standard deviation.

58.9+ 5.7 um) and width (3.3 0.2 um to 11.2+ 2.7 um) during ment remain unchanged in upstream migrants (Figs. 5E & 5F), the
the period between its downstream and upstream migration (Figs. 1¢ellow photostable pigment (Fig. 5C) has been replaced by a large
& 1D). In unfixed retinae of both downstream and upstreamunpigmented ellipsosome (Figs. 1D, 2E, 3B, & 5G). The devel-
migrants, the receptor regions occupied by the distended endoplaspment of the ellipsosome in the upstream phase coincides with an
mic reticula in the myoid contain short-wavelength-absorbingincrease in both length (2% 3.7 to 60.1+ 5.1 um) and width
pigments (Figs. 2A & 2D). The pigment in the downstream phasg2.5 + 0.5 to 11.2+ 2.7 um) (Figs. 1C & 1D). In the upstream
appears yellow, while that in the upstream phase appears mogghase, the C2 receptors also possess a tapered outer segment and
orange (Figs. 2A & 2D). Microspectrophotometry (MSP) demon- a pedicle-shaped receptor terminal but, unlike the situation in the
strates that both of these pigments are photostable and absodownstream phase, the endoplasmic reticula are not distended and
strongly below about 550 nm (Figs. 4C & 4G). Although not the yellow pigment in the myoid has been lost and gives way to the
examined biochemically, it is thought that these colored filters maylarge, essentially transparent, ellipsosome of mitochondrial origin.
comprise the same pigment in both migrant phases but occurring iMSP confirms the lack of any pigment within the ellipsosome
different concentrations, as has been found for the orange and rdéig. 5G), which may function to focus light onto the outer

oil droplets in the avian retina (Goldsmith et al., 1984). The meansegment rather than providing the capacity for any spectral filter-
wavelengths of maximum absorbaneg,(,) of the photosensitive ing. However, in contrast to the C1 cone, the presence of the
visual pigments in the C1 cones of downstream and upstreargellow screening pigment within the downstream C2 myoid shifts
migrants were very similar at 610 nm and 616 nm, respectivelythe calculated peak spectral sensitivity of the cell to a wavelength
(Figs. 4A, 4B, & 4E—4F; Table 1). When the quantal spectral(543 nm) longer than the,, of the visual pigment.

sensitivity is calculated for the whole photoreceptor (Figs. 4D &
4H), the comparable peaks at 614 nm and 618 nm show that th
photostable pigments within the myoid would simply prevent
photostimulation of the beta-band of the visual pigment, as is theAs is typical of other vertebrate rod photoreceptors, the rod of the
case with some other short-wavelength-absorbing spectral filterdownstream migrant o6. australiscontains a cylindrical outer
(Muntz, 1973). segment with only a moderate taper and an ellipsoid containing
numerous mitochondria (Fig. 1C). Like the C1 cone, the ellipsoid
is filled with distended endoplasmic reticula that contain a pale
yellow pigment (Fig. 2C). During the period between the down-
In the downstream migrants, the second type of cone photoreceptstream and upstream migrations, the rods increase in both length
(C2) has a tapered outer segment, a pedicle-shaped receptor tét5+ 0.3 um to 55.6+ 1.9 um) and width (1.7 0.3 um to 4.2+
minal, and a myoid containing a yellow photostable pigment1.5 um) (Figs. 1C, 1D, 2C, 2F, & 3C). The rod visual pigments
(Figs. 1C & 2B). The outer segment contains a photosensitivdhave a meam,yx at 506 and 500 nm in the downstream and
visual pigment with a meana, at 515 nm (Figs. 5A & 5B). upstream migrants, respectively, and during both migrations, the
Although the spectral absorption characteristics of the visual pigmyoid region contains low concentrations of a short-wavelength-

l@ledium-wavelength-sensitive rods

Medium-wavelength-sensitive cones (C2)
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. types of photoreceptors in downstream (A—C) and
upstream (D-E) migrants @beotria australisphoto-
graphed using differential interference contrast (Nomar-
? ski) optics in unfixed preparations. (A, D) The C1

cone. (B, E) The C2 cone. (C, F) The rod. Note the

F vy n * dense aggregations of yellow and orange pigment (p)
s - in the myoid regions. The ellipsoid region (e) also
s A : contains low concentrations of pigment. The pigment
&' | F LR inthe myoid region of the C2 cone in downstream
4 ] : migrants (B) is replaced by a large ellipsosome (es) in
the upstream migrants (E). n: nucleus; and os: outer
segment. Scale bars:;ian (A); 2 um (B); 2 um (C);
== s = 6um (D); 4 um (E); and 2um (F).

absorbing “yellow” photostable pigment that absorbs wavelengthsensitivity, strongly suggesting the possibility of a cone-based
below about 550 nm (Fig. 6). In both the downstream and up-color vision system.
stream migrants, absorption by the yellow myoid pigment does not On the basis of the goodness-of-fit of the mean absorbance
cause an appreciable shift in the calculated peak spectral sensitigpectra to mathematical visual pigment templates (Govardovskii
ity of the cell from that conferred by the visual pigment (Fig. 6). et al., 2000), each of the three visual pigments in both the down-
stream and upstream migrants Gf australisis a porphyropsin
Discussion (where the chromophore conjugated with the opsin protein is 3,
4-didehydroretinal, an aldehyde of vitamin)AThe possession of
Ultrastructural and microspectrophotometric examinations of thean Ax-based visual pigment b@. australisat the time this species
retinal photoreceptors in downstream and upstream migrating adulenters the sea contrasts with the situation in the comparable stage
of the southern hemisphere lampr@y australisshow that the  of Petromyzon marinuand in marine teleosts and elasmobranchs,
retinae of both life cycle stages contain two types of cone and ongvhich, generally, have vitaminAbased visual pigments (rhodop-
type of rod. Each cone photoreceptor type has a different spectrains) (Bowmaker, 1990 but see Cummings & Partridge, 2001).
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at a shorter wavelength than the visual pigments in the rod
photoreceptors of upstream migrants of the northern hemisphere
lampreysL. fluviatilis (517 nm, Govardovskii & Lychakov, 1984)
andP. marinus(525 nm, Harosi & Kleinschmidt 1993). The rod
Amax for G. australisis thus more similar to the rodax of
gnathostomatous vertebrates, especially marine teleosts (Bow-
maker, 1990). Another interesting feature of the rod photoreceptors
in Geotriais the yellow photostable pigment found in the inner
segment. While spectral filters occur in the cone photoreceptors of
some jawed fishes, reptiles, birds, and mammals (albeit packaged
differently), this is the first report of an intracellular spectral filter

in a rod photoreceptor. This raises the question of whether the rods
are operating under light levels similar to those of the cone
photoreceptors, as has been suggested to be the case in the
northern hemisphere lampréyampetra fluviatilis(Govardovskii

& Lychakov, 1984).

Why shouldG. australishave retained or evolved a second
cone type which, unlike the other cone of this species and the
single cone of other lamprey species, is medium wavelength
sensitive (MWS)? Sincés. australis spends only a short time
migrating downstream, travelling at night, and not feeding, the
characteristics of the retina of downstream migrants presumably
represent a preadaptation for life in the ocean. During its marine
trophic phase,G. australisis particularly susceptible to avian
predation. This view is based on the very large numbers of adult
G. australisthat are caught by the grey-headed albatfissnedia
g:hrysoma(Potter etal., 1979). Since albatrosses feed in an average
the upstream phase Beotria australis (A) C1 cone. (B) C2 cone. (C) water depth _Of only 0.74 m (Huin & P_rlnce,_1997), the_adults
Rod. Note the dense packing of distended endoplasmic reticula (er) in th@f G. australismust spend much of their day in the well-lit sur-
myoid region of both the C1 cone and rod photoreceptors. The denselface marine waters of the Southern Ocean, in contrast to species
stained inner segment of the C2 cone possesses a developing ellipsoso®iéch asP. marinus which often occupy deep waters (Beamish,
(es) surrounded by mitochondria (m). n: nucleus; and os: outer segmeni980; Halliday, 1991). Consequently, it may be advantageous for
Scale bars= 4 um. G. australisto be able to detect visually not only prey but avian

predators in surface waters, which, during the austral summer,
remain brightly lit for almost 24 h.
Interestingly, during the upstream migration Bf marinus the Having two cone types, one of which is LWS and the other
chromophore becomes,fbased (Wald, 1942; Harosi & Klein- MWS (Fig. 7), may increase the ability to detect the achromatic
schmidt, 1993), as is typically the case in freshwater teleostgontrast (brightness) between objects observed against background
(Bowmaker, 1990). In contrast, the chromophore of the upstreanilumination and thus improve the ability &. australisto detect
migratingLampetra fluviatilisis A;-based, which almost certainly the silhouettes of avian predators against the sky or fish against the
accounts for the short wavelength shiftggl. (555 nm) of its cone  water (Lythgoe, 1979). Sillman et al. (1999) have suggested a
visual pigment compared . marinus(600 nm) and the C1 cone similar function for the multiple cone pigments in the shovelnose
of G. australis (610/616 nm in the downstream and upstream sturgeonScaphirhynchus platorynchuend the paddlefistiPoly-
migrants, respectively). When considered together with the findingpdon spathulawhich both live in an environment where light of
of the entire complement of photoreceptors possessing visualll wavelengths is limited. In brightly lit water, Maximov (2000)
pigments incorporating a chromophore based on vitamimAhe has suggested that selection pressures to overcome the visual
anadromous white sturgedkcipenser transmontanug appears problems caused by light flicker at the surface of the ocean may
that migration between freshwater and saltwater may not be sufave led to the evolution of two such types of cone visual pigment
ficient to induce a paired &A visual pigment system (Whitmore as long ago as 500 million years.
& Bowmaker, 1989; Sillman et al., 1995). It is also possible that the outputs from the two cones are

The Amax Of the visual pigments in the C1 cone @f australis ~ compared by the visual system of this lamprey in order to analyze
(610 and 616 nm in the downstream and upstream migrantsshromatic (color) information in the environment in addition to
respectively) and the single cone types Rf marinusand L. brightness. At least two types of horizontal cells, which are the first
fluviatilis lie within the range of the\. for the visual pigments level of visual processing in the retina, have been revealed ultra-
in the long-wavelength-sensitive (LWS) cones of freshwater gnastructurally (Collin et al., 1999) and immunohistochemically (S. P.
thostomatous fishes (Bowmaker, 1990). Therefore Athg of the Collin and M. Kalloniatus, unpublished data) @& australis and
visual pigment of the C2 cone i@. australis(515 and 515 nm in  so the neural substrate for opponent interactions between different
the downstream and upstream migrants, respectively) falls outsidghotoreceptors exists. Moreover, both types of cone (and the rods)
the range for LWS cones in freshwater fishes and is more typicahre known, from topographical analysis, to be distributed through-
of a MWS cone. out the entire retina with approximately three times more rods than

The Amax for the rod pigment (506 and 500 nm in the down- cones (the numbers of C1 and C2 cones are comparable, K.
stream and upstream migrants, respectively@oaustralisoccurs ~ Wallace and S. P. Collin, unpublished data). Of course, if the rod

Fig. 3. Ultrastructural characterization of the photoreceptors in the retina o
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Fig. 4. Spectral characteristics of the LWS (C1) cone in downstream (A-D) and upstream (E—H) migr&estafh australis

(A, E) Prebleach and postbleach absorbance spectra. Filled squares indicate the mean prebleach absorbance spectrum fitted with the
template spectrum of Govardovskii et al. (2000) (thick line). The open circles represent the mean postbleach absorbance spectrum fitted
with an unweighted running average (thin line). (B, F) Mean difference spectra (filled squares) fitted with a template spectrum of
Govardovskii et al. (2000) (thick line). (C, G) Mean absorptance spectrum of the photostable pigment in the myoid region fitted with

an unweighted running average (smooth line). (D, H) The relative quantal spectral sensitivity of the whole photoreceptor for the
downstream {max = 610 nm) and upstream .« = 616 nm) migrants, based on both the visual pigment and screening pigment spectra

and the dimensions of the inner and outer segments.
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Fig. 5. Spectral characteristics of the MWS (C2) cone in downstream (A-D) and upstream (E-H) migr&esta australis

(A, E) Prebleach and postbleach absorbance spectra. Filled squares indicate the mean prebleach absorbance spectrum fitted with the
template spectrum of Govardovskii et al. (2000) (thick line). Open circles represent the mean postbleach absorbance spectrum fitted
with an unweighted running average (thin line). (B, F) Mean difference spectra (filled squares) fitted with a template spectrum of
Govardovskii et al. (2000) (thick line). (C, G) Mean absorptance spectrum of the photostable pigment in the myoid region fitted with

an unweighted running average (smooth line). Note high concentration of pigment in the myoid region of the downstream migrant cuts
off short wavelengths below approximately 550 nm and is replaced, in the upstream migrant, by an ellipsosome, which contains no
pigment. (D, H) The relative quantal spectral sensitivity of the whole photoreceptor of downstkgan+(515 nm) and upstream

(Amax = 515 nm) migrants based on both the visual pigment and screening pigment spectra and the dimensions of the inner and outer
segments. The myoidal screening pigment in the downstream migrant shifts the peak spectral sensitivity from 515 nm to 543 nm.
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Fig. 6. Spectral characteristics of the MWS rod in the downstream (A-D) and upstream (E—H) migra@eoifa australis

(A, E) Prebleach and postbleach absorbance spectra. Filled squares indicate the mean prebleach absorbance spectrum fitted with the
template spectrum of Govardovskii et al. (2000) (thick line). Open circles represent the mean postbleach absorbance spectrum fitted
with an unweighted running average (thin line). (B, F) Mean difference spectra (filled squares) fitted with a template spectrum of
Govardovskii et al. (2000) (thick line). (C, G) Mean absorptance spectrum of the photostable pigment in the myoid region fitted with

an unweighted running average (smooth line). Note lower concentration of pigment in the myoid region in both stages. (D, H) The
relative quantal spectral sensitivity of the whole photoreceptor for the downstigam= 506 nm) and upstream\ax = 500 nm)

migrants based on both the visual pigment and screening pigment spectra and the dimensions of the inner and outer segments.
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photoreceptors oB. australisare also functioning under the same & Bowmaker, 1982; Bowmaker, 1990). The loss by upstream
light levels as the cones (as irmmpetra fluviatilis Govardovskii ~ migrants ofG. australisof the yellow screening pigment in the C2
& Lychakov, 1984) there is the potential for a trichromatic, rather photoreceptor and its replacement by a transparent ellipsosome is
than simply a dichromatic, color vision system. Behavioral studiesconsistent with the fact that these individuals migrate at night. The
must be performed to investigate this possibility. spherical C2 ellipsosome may play a role in trapping photons and
The presence of a large ellipsosome within the ellipsoid regiorfocusing them onto the visual pigment in the outer segment,
of the C2 (MWS) cones in upstream, but not downstream, mi-thereby enhancing visual sensitivity (Young & Martin, 1984). The
grants ofG. australis which is the first report of such a structure subsequent loss of the screening pigment by the MWS photorecep-
in lampreys, suggests that the need for spectral filtering of shortor in the upstream migrant also shifts its spectral sensitivity to
wavelengths decreases markedly during the adult phase of thighorter wavelengths to align closely with thg,,, of the rod
species. Described by Franz (1932) as false-oil droplets, thegeghotoreceptor (Fig. 7). Physiological analysis is required to indi-
large globules of mitochondrial origin have been previously re-cate the range of light levels in which the rods are operating and
corded in cone photoreceptors in a number of vertebrate classewhether the close proximity of the spectral sensitivity curves of the
including teleosts (Walls, 1942; Ishikawa & Yamada, 1969; Bor- MWS receptor and the rod, and the change in the relative spacing
wein & Hollenberg, 1973; Kunz & Regan, 1973; Kunz & Wise, of the three receptor sensitivities, decreases this species’ capacity
1973; Anctil & Ali, 1976; MacNichol et al., 1978; Nag & Bhatta- for color discrimination.
charjee, 1989, 1995; Nag, 1995) and mammals (Knabe et al., Among lampreys, the yellow photostable pigment found in all
1997) including primates (Bowmaker, 1991). Although the ellip- three photoreceptor cell types is unique & australis and
sosomes in upstream migrants®faustralisdo not act as spectral presumably evolved in response to the need to filter out the
filters, similarly large mitochondria or ellipsosomes in fish have potentially damaging short-wavelength light to which the eye is
been shown to possess a spectral absorbance that is characteristimstantly being subjected when this species is in surface marine
of a dense heme pigment, similar to that of reduced cytochrome waters. Interestingly, a type of single cone in the ornate lizard
(Avery & Bowmaker, 1982; Bowmaker, 1990). This heme pigment Ctenophorous ornatysvhich also inhabits a brightly lit environ-
has been found to absorb light within a narrow band in the violetment, has recently been found to possess a similar yellow pigment
region of the spectrum (around 415 nm), thereby reducing tqBarbour et al., 2002). Based on the spectral absorptance proper-
shorter wavelengths the spectral sensitivity of the visual pigmentsies of the yellow pigments . australis we suspect that they
housed within the outer segments (MacNichol et al., 1978; Averymay be carotenoids and similar to the screening pigments identi-
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fied in the cornea and lens of a number of species that frequent the photoreceptors and retinal pigment epitheliuRefomyzon marinus
upper regions of the water column (Douglas & Marshall, 1999; L) Experimental Eye Resear@9, 45-60.

: . : . Dickson, D.H. & Graves, D.A. (1982). The ultrastructure and develop-
Siebeck & Marshall, 2001; Collin & Collin, 2001). The removal of ment of the eye. InThe Biology of Lampreys, Volume &d. by

short-wavelength Iight Wou_ld also prevent photo_stimulgtion of the  Harpisty, M.W. & PoTTER, 1.C., pp. 43-94. London: Academic Press.
beta-band of the visual pigments (potentially improving wave-DoucLas, R.H. & MarsHaLL, N.I. (1999). A review of vertebrate and
length discrimination) and increase acuity by absorbing short- invertebrate ocular filters. IAdaptive Mechanisms in the Ecology of

wavelenath light tter the atm here or lar structur Vision ed.ARCHER, S.N., DiaMG0oz, M.B.A., LOEw, E.R., PARTRIDGE,
ofathieeyge (Mgunt:CilQ(;Se)d by the atmosphere or ocular structures J.C. & VALLERGA, S., pp. 95-162. Dordrecht: Kluwer Academic Press.

] - . DUKE-ELDER, S. (1958).System of Ophthalmology. Volume 1. The Eye in
Whether increasing the range of wavelengths available for Egyolution St. Louis, Missouri: C.V. Mosby.

cone-based vision aridr the need to sample the visual world Franz, V. (1932). Auge und Akkommodation vdPetromyzor{Lampetrd

chromatically was the selective force behind the evolution (or fluviatilis L. Zoologische Jahrbulicher Abteilung fur allgemeine Zoolo-

; i gie und Physiologie der Tiers2, 118-178.
retention) of a second cone type B australisis not known. GoLpsMmITH, T.H., CoLLINs, 1.S. & LicHT, S. (1984). The cone oil droplets

However, the implicati_ons of our findings suggest _that the early ¢ qvian retinasVision Researcl24, 1661-1671.

vertebrates may hold important clues to the selection pressure(8ovarpovskir, VI. & Lycuakov, D.V. (1984). Visual cells and visual
underlying the plasticity of photoreception and the evolution of  pigments of the lamprey,ampetra fluviatilisL. Journal of Compara-
color vision. The molecular genetic basis of photoreception in_ tive Physiology AL54, 279-286.

. . . . GovaArDpOVsKII, V.I., FYHRQuUIST, N., REUTER, T., KuzMIN, D.G. & DoN-
lampreys is now the subject of intense study in our laboratory. xER, K. (2000). In s%arch of the visual pigment templatsual

Neurosciencd 7, 509-528.
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