26 research outputs found

    Gonadal development and expression of sex-specific genes during sex differentiation in the Japanese eel

    No full text
    International audienceThe process of gonadal development and mechanism involved in sex differentiation in eels are still unclear. The objectives were to investigate the gonadal development and expression pattern of sex-related genes during sex differentiation in the Japanese eel, Anguilla japonica. For control group, the elvers of 8–10 cm were reared for 8 months; and for feminization, estradiol-17β (E2) was orally administered to the elvers of 8–10 cm for 6 months. Only males were found in the control group, suggesting a possible role of environmental factors in eel sex determination. In contrast, all differentiated eels in E2-treated group were female. Gonad histology revealed that control male eels seem to differentiate through an intersexual stage, while female eels (E2-treated) would differentiate directly from an undifferentiated gonad. Tissue distribution and sex-related genes expression during gonadal development were analyzed by qPCR. The vasa, figla and sox3 transcripts in gonads were significantly increased during sex differentiation. High vasa expression occurred in males; figla and sox3 were related to ovarian differentiation. The transcripts of dmrt1 and sox9a were significantly increased in males during testicular differentiation and development. The cyp19a1 transcripts were significantly increased in differentiating and differentiated gonads, but did not show a differential expression between the control and E2-treated eels. This suggests that cyp19a1 is involved both in testicular differentiation and development in control males, and in the early stage of ovarian differentiation in E2-treated eels. Importantly, these results also reveal that cyp19a1 is not a direct target for E2 during gonad differentiation in the eel

    Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions

    No full text
    International audienceThe gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eel

    Expression of aromatase in radial glial cells in the brain of the Japanese eel provides insight into the evolution of the cyp191a gene in Actinopterygians.

    Get PDF
    The cyp19a1 gene that encodes aromatase, the only enzyme permitting conversion of C19 aromatizable androgens into estrogens, is present as a single copy in the genome of most vertebrate species, except in teleosts in which it has been duplicated. This study aimed at investigating the brain expression of a cyp19a1 gene expressed in both gonad and brain of Japanese eel, a basal teleost. By means of immunohistochemistry and in situ hybridization, we show that cyp19a1 is expressed only in radial glial cells of the brain and in pituitary cells. Treatments with salmon pituitary homogenates (female) or human chorionic gonadotrophin (male), known to turn on steroid production in immature eels, strongly stimulated cyp19a1 messenger and protein expression in radial glial cells and pituitary cells. Using double staining studies, we also showed that aromatase-expressing radial glial cells exhibit proliferative activity in both the brain and the pituitary. Altogether, these data indicate that brain and pituitary expression of Japanese eel cyp19a1 exhibits characteristics similar to those reported for the brain specific cyp19a1b gene in teleosts having duplicated cyp19a1 genes. This supports the hypothesis that, despite the fact that eels also underwent the teleost specific genome duplication, they have a single cyp19a1 expressed in both brain and gonad. Such data also suggest that the intriguing features of brain aromatase expression in teleost fishes were not gained after the whole genome duplication and may reflect properties of the cyp19a1 gene of ancestral Actinopterygians

    Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase

    No full text
    International audienceDuplicated cyp19a1 genes (cyp19a1a encoding aromatase a and cyp19a1b encoding aromatase b) have been identified in an increasing number of teleost species. Cyp19a1a is mainly expressed in the gonads, while cyp19a1b is mainly expressed in the brain, specifically in radial glial cells, as largely investigated by Kah and collaborators. The third round of whole-genome duplication that specifically occurred in the teleost lineage (TWGD or 3R) is likely at the origin of the duplicated cyp19a1 paralogs. In contrast to the situation in other teleosts, our previous studies identified a single cyp19a1 in eels (Anguilla), which are representative species of a basal group of teleosts, Elopomorpha. In the present study, using genome data mining and phylogenetic and synteny analyses, we confirmed that the whole aromatase genomic region was duplicated in eels, with most aromatase-neighboring genes being conserved in duplicate in eels, as in other teleosts. These findings suggest that specific gene loss of one of the 3R-duplicated cyp19a1 paralogs occurred in Elopomorpha after TWGD. Similarly, a single cyp19a1 gene was found in the arowana, which is a representative species of another basal group of teleosts, Osteoglossomorpha. In eels, the single cyp19a1 is expressed in both the brain and the gonads, as observed for the single CYP19A1 gene present in other vertebrates. The results of phylogenetic, synteny, closest neighboring gene, and promoter structure analyses showed that the single cyp19a1 of the basal teleosts shared conserved properties with both teleost cyp19a1a and cyp19a1b paralogs, which did not allow us to conclude which of the 3R-duplicated paralogs (cyp19a1a or cyp19a1b) was lost in Elopomorpha. Elopomorpha and Osteoglossomorpha cyp19a1 genes exhibited preserved ancestral functions, including expression in both the gonad and brain. We propose that the subfunctionalization of the 3R-duplicated cyp19a1 paralogs expressed specifically in the gonad or brain occurred in Clupeocephala, after the split of Clupeocephala from Elopomorpha and Osteoglossomorpha, which represented a driving force for the conservation of both 3R-duplicated paralogs in all extant Clupeocephala. In contrast, the functional redundancy of the undifferentiated 3R-duplicated cyp19a1 paralogs in elopomorphs and osteoglossomorphs would have favored the loss of one 3R paralog in basal teleosts

    Distribution of <i>cyp19a1b</i> mRNA and aromatase protein in the brain of the Japanese eel.

    No full text
    <p>A, D, G: <i>Cyp19a1b</i> mRNA in the brain of the Japanese eel as revealed by <i>in situ</i> hybridization in the supracommissural nucleus of the subpallium (Vs), the parvocellular preoptic nucleus (PP) and the magnocellular preoptic nucleus (PM). Note that the signal is consistently restricted to the regions adjacent to the ventricles. B, E, H: Aromatase protein in the brain of the Japanese eel as revealed by immunohistochemistry on the same sections than in A, D and G. One can see that immunoreactive cells have their nuclei along the ventricles and long lateral processes C, F, I: Merges showing overlapping (yellow color) of <i>cyp19a1b</i> mRNA and aromatase protein in the brain of the Japanese eel as revealed by immunohistochemistry on the same sections than in A, D and G. Only the radial processes do not show co-expression. All bars  = 20 μm.</p

    Details of the aromatase-positive cells characterizing them as radial glial cells.

    No full text
    <p>(A) Proximal processes (arrows) reaching the ventricle at the level of the anterior periventricular preoptic nucleus. Bar  = 15 μm (B) Long radial processes (arrowheads) some of which end at the ventral surface of the brain (arrow) while others project more laterally. Bar  = 75 μm (C) End-feet of the distal processes at the periphery of the lateral hypothalamus (L Hyp) close to the meninx. Bar  = 8 μm.</p
    corecore