331 research outputs found

    Intrinsic determinants of neurotoxic aggregate formation by the amyloid β peptide

    Get PDF
    The extent to which proteins aggregate into distinct structures ranging from prefibrillar oligomers to amyloid fibrils is key to the pathogenesis of many age-related degenerative diseases. We describe here for the Alzheimer's disease-related amyloid β peptide (Aβ) an investigation of the sequence-based determinants of the balance between the formation of prefibrillar aggregates and amyloid fibrils. We show that by introducing single-point mutations, it is possible to convert the normally harmless Aβ40 peptide into a pathogenic species by increasing its relative propensity to form prefibrillar but not fibrillar aggregates, and, conversely, to abolish the pathogenicity of the highly neurotoxic E22G Aβ42 peptide by reducing its relative propensity to form prefibrillar species rather than mature fibrillar ones. This observation can be rationalized by the demonstration that whereas regions of the sequence of high aggregation propensity dominate the overall tendency to aggregate, regions with low intrinsic aggregation propensities exert significant control over the balance of the prefibrillar and fibrillar species formed, and therefore play a major role in determining the neurotoxicity of the Aβ peptide. © 2010 by the Biophysical Society

    Increased RPA1 gene dosage affects genomic stability potentially contributing to 17p13.3 duplication syndrome

    Get PDF
    A novel microduplication syndrome involving various-sized contiguous duplications in 17p13.3 has recently been described, suggesting that increased copy number of genes in 17p13.3, particularly PAFAH1B1, is associated with clinical features including facial dysmorphism, developmental delay, and autism spectrum disorder. We have previously shown that patient-derived cell lines from individuals with haploinsufficiency of RPA1, a gene within 17p13.3, exhibit an impaired ATR-dependent DNA damage response (DDR). Here, we show that cell lines from patients with duplications specifically incorporating RPA1 exhibit a different although characteristic spectrum of DDR defects including abnormal S phase distribution, attenuated DNA double strand break (DSB)-induced RAD51 chromatin retention, elevated genomic instability, and increased sensitivity to DNA damaging agents. Using controlled conditional over-expression of RPA1 in a human model cell system, we also see attenuated DSB-induced RAD51 chromatin retention. Furthermore, we find that transient over-expression of RPA1 can impact on homologous recombination (HR) pathways following DSB formation, favouring engagement in aberrant forms of recombination and repair. Our data identifies unanticipated defects in the DDR associated with duplications in 17p13.3 in humans involving modest RPA1 over-expression

    Metastability of native proteins and the phenomenon of amyloid formation

    Get PDF
    An experimental determination of the thermodynamic stabilities of a series of amyloid fibrils reveals that this structural form is likely to be the most stable one that protein molecules can adopt even under physiological conditions. This result challenges the conventional assumption that functional forms of proteins correspond to the global minima in their free energy surfaces and suggests that living systems are conformationally as well as chemically metastable. © 2011 American Chemical Society

    Single left coronary artery with separate origins of proximal and distal right coronary arteries from left anterior descending and circumflex arteries – a previously undescribed coronary circulation

    Get PDF
    A single left coronary artery with right coronary artery arising from either left main stem (LMS) or left anterior descending artery (LAD) or circumflex artery (Cx) is an extremely rare coronary anomaly. This is the first report of separate origins of proximal and distal RCA from LAD and circumflex arteries respectively in a patient with a single left coronary artery. This 57 year old patient presented with unstable angina and severe stenotic disease of LAD and Cx arteries and underwent urgent successful quadruple coronary artery bypass grafting. The anomalies of right coronary artery in terms of their origin, number and distribution are reviewed

    Massively Parallel Haplotyping on Microscopic Beads for the High-Throughput Phase Analysis of Single Molecules

    Get PDF
    In spite of the many advances in haplotyping methods, it is still very difficult to characterize rare haplotypes in tissues and different environmental samples or to accurately assess the haplotype diversity in large mixtures. This would require a haplotyping method capable of analyzing the phase of single molecules with an unprecedented throughput. Here we describe such a haplotyping method capable of analyzing in parallel hundreds of thousands single molecules in one experiment. In this method, multiple PCR reactions amplify different polymorphic regions of a single DNA molecule on a magnetic bead compartmentalized in an emulsion drop. The allelic states of the amplified polymorphisms are identified with fluorescently labeled probes that are then decoded from images taken of the arrayed beads by a microscope. This method can evaluate the phase of up to 3 polymorphisms separated by up to 5 kilobases in hundreds of thousands single molecules. We tested the sensitivity of the method by measuring the number of mutant haplotypes synthesized by four different commercially available enzymes: Phusion, Platinum Taq, Titanium Taq, and Phire. The digital nature of the method makes it highly sensitive to detecting haplotype ratios of less than 1∶10,000. We also accurately quantified chimera formation during the exponential phase of PCR by different DNA polymerases

    Synthetic miR-34a mimics as a novel therapeutic agent for Multiple Myeloma : in vitro and in vivo evidence

    Get PDF
    PURPOSE: Deregulated expression of microRNAs (miRNAs) has been demonstrated in multiple myeloma (MM). A promising strategy to achieve a therapeutic effect by targeting the miRNA regulatory network is to enforce the expression of miRNAs that act as tumor suppressor genes, such as miR-34a EXPERIMENTAL DESIGN: Here, we investigated the therapeutic potential of synthetic miR-34a against human MM cells in vitro and in vivo RESULTS: Either transient expression of miR-34a synthetic mimics or lentivirus-based stable enforced expression of miR-34a gene triggered growth inhibition and apoptosis in MM cells in vitro. Synthetic miR-34a downregulated canonic targets BCL2, CDK6 and NOTCH1 at both the mRNA and protein level. Lentiviral vector-transduced MM xenografts with constitutive miR-34a expression showed high growth inhibition in SCID mice. The anti-MM activity of lipidic-formulated miR-34a was further demonstrated in vivo in two different experimental settings: i) SCID mice bearing non transduced MM xenografts; and ii) SCID-synth-hu mice implanted with synthetic 3D scaffolds reconstituted with human bone marrow stromal cells and then engrafted with human MM cells. Relevant tumor growth inhibition and survival improvement were observed in mice bearing TP53-mutated MM xenografts treated with miR-34a mimics in the absence of systemic toxicity CONCLUSIONS: Our findings provide a proof-of-principle that formulated synthetic miR-34a has therapeutic activity in preclinical models and support a framework for development of miR-34a-based treatment strategies in MM patients

    Synthetic miR-34a mimics as a novel therapeutic agent for Multiple Myeloma : in vitro and in vivo evidence

    Get PDF
    PURPOSE: Deregulated expression of microRNAs (miRNAs) has been demonstrated in multiple myeloma (MM). A promising strategy to achieve a therapeutic effect by targeting the miRNA regulatory network is to enforce the expression of miRNAs that act as tumor suppressor genes, such as miR-34a EXPERIMENTAL DESIGN: Here, we investigated the therapeutic potential of synthetic miR-34a against human MM cells in vitro and in vivo RESULTS: Either transient expression of miR-34a synthetic mimics or lentivirus-based stable enforced expression of miR-34a gene triggered growth inhibition and apoptosis in MM cells in vitro. Synthetic miR-34a downregulated canonic targets BCL2, CDK6 and NOTCH1 at both the mRNA and protein level. Lentiviral vector-transduced MM xenografts with constitutive miR-34a expression showed high growth inhibition in SCID mice. The anti-MM activity of lipidic-formulated miR-34a was further demonstrated in vivo in two different experimental settings: i) SCID mice bearing non transduced MM xenografts; and ii) SCID-synth-hu mice implanted with synthetic 3D scaffolds reconstituted with human bone marrow stromal cells and then engrafted with human MM cells. Relevant tumor growth inhibition and survival improvement were observed in mice bearing TP53-mutated MM xenografts treated with miR-34a mimics in the absence of systemic toxicity CONCLUSIONS: Our findings provide a proof-of-principle that formulated synthetic miR-34a has therapeutic activity in preclinical models and support a framework for development of miR-34a-based treatment strategies in MM patients

    Mechanism of eIF6 release from the nascent 60S ribosomal subunit.

    Get PDF
    SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.Supported by a Federation of European Biochemical Societies Long term Fellowship (to FW), Specialist Programme from Bloodwise [12048] (AJW), the Medical Research Council [MC_U105161083] (AJW) and [U105115237] (RRK), Wellcome Trust strategic award to the Cambridge Institute for Medal Research [100140], Tesni Parry Trust (AJW), Ted’s Gang (AJW) and the Cambridge NIHR Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.311
    • …
    corecore