48 research outputs found

    Fabrication, structural, optical, electrical, and humidity sensing characteristics of hierarchical NiO nanosheet/nanoball fower like structure flms

    Get PDF
    In this work, nickel oxide (NiO) nanosheet/nanoball-fower-like structures (NSBS) were directly grown on a NiO seed-coated glass substrate using a low-temperature immersion method at 75 ºC. The thickness, or density, of the nanoball-fower-like structures difered based on the following samples order: NSBS1< NSBS2< NSBS3. The synthesised NSBS flms were investigated in terms of structural, optical, electrical, and humidity sensing characteristics. The X-ray difraction (XRD) analysis revealed that the NSBS samples corresponded to the face-centred cubic NiO with fve difraction patterns indexed to the (111), (200), (220), (311), and (222) planes. The interplanar spacing, lattice parameter, unit cell volume, strain, and stress were also determined from the XRD results. The transmittance spectra showed that the NSBS samples had a transparency of more than 30% in the visible region. The optical bandgap values for the NSBS samples were estimated in the range between 3.72 and 3.75 eV, which is directly related to their lattice expansion and defect characteristics. The current–voltage and Hall efect measurement results revealed that the NSBS2 displayed good electrical properties with the resistance, hole concentration, and hole mobility values of 7.84 MΩ, 8.71×1015 hole/cm−3, and 1.88×102 cm2 /V s, respectively. The NSBS samples performed well for humidity sensing with the highest sensitivity value of 169 being obtained for the NSBS2. These humidity sensing results correlated well with their structural, optical, and electrical characteristics

    Influence of annealing temperature on the sensitivity of nickel oxide nanosheet films in humidity sensing applications

    Get PDF
    Nickel oxide (NiO) nanosheet films were successfully grown onto NiO seed-coated glass substrates at different annealing temperatures for humidity sensing applications. NiO seed layers and NiO nanosheet films were prepared using a sol-gel spin coating and sonicated sol-gel immersion techniques, respectively. The properties of NiO nanosheet films at as-deposited, 300 ℃, and 500 ℃-annealed were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) spectroscopy, and humidity sensor measurement system. The XRD patterns demonstrate that the grown NiO films have crystalline cubic structures at temperature of 300 ℃ and 500 ℃. The FESEM images show that the large porous nanosheet network spread over the layers as the annealing temperature increased. The UV-vis spectra revealed that all the nanosheet films have the average transmittance below than 50% in the visible region, with absorption edges ~ 350 nm. The optical band gap energy was evaluated in ranges of 3.39 to 3.61 eV. From the obtained humidity sensing results, it shows that 500 ℃-annealed film exhibited the best sensitivity of 257, as well as the slowest response time, and the fastest recovery time compared with others

    Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

    Get PDF
    Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film

    Will Africans take COVID-19 vaccination?

    Get PDF
    The economic and humanistic impact of COVID-19 pandemic is enormous globally. No definitive treatment exists, hence accelerated development and approval of COVID-19 vaccines, offers a unique opportunity for COVID-19 prevention and control. Vaccine hesitancy may limit the success of vaccine distribution in Africa, therefore we assessed the potentials for coronavirus vaccine hesitancy and its determinants among Africans. An online cross-sectional African-wide survey was administered in Arabic, English, and French languages. Questions on demographics, self-reported health status, vaccine literacy, knowledge and perception on vaccines, past experience, behavior, infection risk, willingness to receive and affordability of the SARS-COV-2 vaccine were asked. Data were subjected to descriptive and inferential statistics. A total of 5,416 individuals completed the survey. Approximately, 94% were residents of 34 African countries while the other Africans live in the Diaspora. Only 63% of all participants surveyed were willing to receive the COVID-19 vaccination as soon as possible and 79% were worried about its side effects. Thirty-nine percent expressed concerns of vaccine-associated infection. The odds of vaccine hesitancy was 0.28 (95% CI: 0.22, 0.30) among those who believed their risk of infection was very high, compared to those who believed otherwise. The odds of vaccine hesitancy was one-fifth (OR = 0.21, 95% CI: 0.16, 0.28) among those who believed their risk of falling sick was very high, compared to those who believed their risk of falling very sick was very low. The OR of vaccine hesitancy was 2.72 (95% CI: 2.24, 3.31) among those who have previously refused a vaccine for themselves or their child compared to counterparts with no self-reported history of vaccine hesitancy. Participants want the vaccines to be mandatory (40%), provided free of charge (78%) and distributed in homes and offices (44%). COVID-19 vaccine hesitancy is substantial among Africans based on perceived risk of coronavirus infection and past experiences

    Will Africans take COVID-19 vaccination?

    Get PDF
    The economic and humanistic impact of COVID-19 pandemic is enormous globally. No definitive treatment exists, hence accelerated development and approval of COVID-19 vaccines, offers a unique opportunity for COVID-19 prevention and control. Vaccine hesitancy may limit the success of vaccine distribution in Africa, therefore we assessed the potentials for coronavirus vaccine hesitancy and its determinants among Africans. An online crosssectional African-wide survey was administered in Arabic, English, and French languages. Questions on demographics, self-reported health status, vaccine literacy, knowledge and perception on vaccines, past experience, behavior, infection risk, willingness to receive and affordability of the SARS-COV-2 vaccine were asked. Data were subjected to descriptive and inferential statistics. A total of 5,416 individuals completed the survey. Approximately, 94% were residents of 34 African countries while the other Africans live in the Diaspora. Only 63% of all participants surveyed were willing to receive the COVID-19 vaccination as soon as possible and 79% were worried about its side effects. Thirty-nine percent expressed concerns of vaccine-associated infection. The odds of vaccine hesitancy was 0.28 (95% CI: 0.22, 0.30) among those who believed their risk of infection was very high, compared to those who believed otherwise. The odds of vaccine hesitancy was one-fifth (OR = 0.21, 95% CI: 0.16, 0.28) among those who believed their risk of falling sick was very high, compared to those who believed their risk of falling very sick was very low. The OR of vaccine hesitancy was 2.72 (95% CI: 2.24, 3.31) among those who have previously refused a vaccine for themselves or their child compared to counterparts with no self-reported history of vaccine hesitancy. Participants want the vaccines to be mandatory (40%), provided free of charge (78%) and distributed in homes and offices (44%). COVID-19 vaccine hesitancy is substantial among Africans based on perceived risk of coronavirus infection and past experiences.http://www.plosone.orgam2022Veterinary Tropical Disease

    FP-LAPW investigation of electronic, magnetic, elastic and thermal properties of Fe-doped zirconium nitride

    No full text
    Full Potential- Linear Augmented Plane Wave (FP-LAPW) method has been employed to study the electronic, magnetic, elastic and thermal properties of Fe-doped Zirconium nitride. In this work, Fe-atoms were doped into the super cell of ZrN in doping concentrations of 12.5%, 25% and 37.5% to replace Zr atoms. Electronic properties such as band structure and DOS were plotted and compared for the doped compounds. Charge density contours were plotted for all the doped compounds. The non-magnetic ZrN doped in different Fe concentrations were found to be ferromagnetic. Magnetic moments have been calculated and compared. Elastic properties have been studied and compared with electronic properties. Appearance of magnetic ordering and its influence with the elastic properties have been reported. Impact of 3d states of Fe in DOS plot on the elastic nature of the compounds has been highlighted. Thermal properties such as Debye temperature and molar heat capacities at low temperature have been determined. Debye temperature is found to decrease with higher doping concentrations. Molar heat capacities are found to increase with higher concentrations of Fe atoms

    Highly porous NiO nanoflower-based humidity sensor grown on seedless glass substrate via one-step simplistic immersion method

    Get PDF
    A highly porous nickel oxide (NiO) nanoflower was deposited directly onto glass substrates by the simplistic immersion method. The nanostructural property of the NiO was studied by X-ray diffraction pattern and obtained high crystal quality after annealing at 500 °Ϲ with an average crystallite size of 15.5 nm. The optical characterization was measured by ultraviolet-visible spectroscopy, with an average transmittance of 58 %. The value of 3.63 eV was estimated and confirmed as NiO bandgap energy. The current-voltage measurement result indicates that the NiO nanoflower has good electrical properties with resistance, resistivity, and conductivity value of 2.31 MΩ, 2.12 Ω.cm, and 4.71 × 10-1 S.cm-1, respectively. The NiO is capable of performing satisfactorily as humidity sensor with a sensitivity of 138 with the response and recovery time were estimated at 389 s and 172 s, respectively. Besides, this sensor has stability at a humidity level of 40-90% relative humidity

    Nanocarnation-like nickel oxide thin film: Structural and optical properties

    Get PDF
    Herein, the structural and optical properties of highly porous nanocarnation-like nickel oxide (NiO) thin film in possibility of sensing applications were reported. The highly porous nanocarnation-like NiO was grown on indium tin oxide (ITO) glass substrates by using sonicated solgel immersion process. The grown film was characterized in details to examine the structural and optical properties using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, and ultraviolet-visible-near in-frared (UV-vis-NIR) spectroscopy, respectively. The XRD pattern reveals that the grown nanocarnation-like NiO film has crystalline NiO with a cubic structure. The UV-vis-NIR spectrum demonstrates that the average transmittance value of the sample in the visible region is approximately 48 % transmission. The results showed that, in view of highly porous nanocarnation-like NiO structure exhibited a great influence on its possibility for sensing applications
    corecore