12 research outputs found

    Formulation and in vitro evaluation of orodispersible tablets of fexofenadine hydrochloride

    Get PDF
    Purpose: To develop orodispersible tablets (ODTs) of fexofenadine hydrochloride using three different superdisintegrants in various ratios and to compare their disintegration properties.Methods: Direct compression technique was used for the preparation of ODTs. Mannitol and Avicel CE-15 (microcrystalline cellulose and guar gum) were used as direct compression diluents. The disintegration time of tablets using each polymer (superdisintegrant) was evaluated as well as othertablet properties including weight fluctuation, hardness, friability, wetting time and water absorption ratio.Results: Satisfactory values were obtained for all the evaluated parameters. As the polymer concentration increased, there was a decrease in disintegration time. A comparison of the three different polymers used revealed that CCM3 formulated with 12 % croscarmellose sodium and 14.66 % lactose had the least disintegration time of 32.33 ± 3.23 s. In vitro release studies showed that the maximum drug release of 94.38 ± 0.12 % in 25 min was obtained for ODT tablets containing croscarmellose sodium (CCM3).Conclusion: The orodispersible tablets had quick disintegrating property which was achieved using superdisintegrants. Thus, superdisintegrants improve the disintegration efficiency of orodispersible fexofenadine tablets at low concentrations, when compared to traditional disintegrants. Keywords: Croscarmellose sodium, Direct compression, Fexofenadine, Orodispersible tablet

    Bioavailability augmentation of silymarin using natural bioenhancers: An in vivo pharmacokinetic study

    No full text
    Pharmacokinetic studies were carried out in male and female rats to quantify silymarin as silybin (A+B) after the oral administration of various silymarin formulations combined with three bioenhancers, namely, lysergol, piperine, and fulvic acid, and compared with plain silymarin formulation (control). A non-compartmental analysis, model independent analysis, was utilized, and various pharmacokinetic parameters (C max, T max, and AUC 0-t) were calculated individually for each treatment group, and the values were expressed as mean ± SEM (n = 6). Plasma samples obtained from the rats were analyzed for the concentration of silymarin through a validated RP-HPLC method and on the basis of data generated from the pharmacokinetic studies. Results indicated that the bioenhancers augmented pharmacokinetic parameters and bioavailability increased 2.4-14.5-fold in all the formulations compared with the control. The current work envisages the development of an industrially viable product that can be further subjected to clinical trials and scientifically supports the development of silymarin as a contemporary therapeutic agent with enhanced bioavailability and medicinal values

    Pharmacological influences of natural products as bioenhancers of silymarin against carbon tetrachloride-induced hepatotoxicity in rats

    No full text
    Abstract Background Popularity of herbal remedies is increasing day by day despite the presence of synthetic drugs to treat the Liver Diseases owing to the adverse effects and high cost of synthetic drugs. Silymarin has tremendous potential for the treatment of various liver disorders because of its high antioxidant potential as liver diseases are associated with increased oxidative stress. The low oral bioavailability of Silymarin continues to be a major challenge in the development of its formulations having clinical efficacy. Our idea was to constitute a pharmaceutical composition of Silymarin with natural products as bioenhancers that might work positively and synergistically in the control of hepatotoxicity. Methods In this work, various combinations of Silymarin with natural bioenhancers such as Lysergol (L), Piperine (P) and Fulvic acid (FA) were prepared and their hepatoprotective activities were evaluated against carbon tetrachloride (CCl4) induced hepatotoxicity in animal model. Results Although, all the combinations decreased the liver enzymes and changed protein level significantly, group G (silymarin:FA (1:1) + P (10%) was found to be most significant as compared to the toxic control. It also displayed better protection when compared to the marketed tablet containing silymarin alone. None of the combinations showed any signs of cytotoxicity when screened on MCF-7 cells by MTT assay. Conclusions Group G (silymarin:FA (1:1) + P (10%) appeared to be the most effective combination in treating the liver diseases envisaging an industrially viable product of Silymarin as a contemporary therapeutic agent with enhanced bioavailability and medicinal value. Further this combination can be examined for safety and efficacy in clinical studies

    Cubosomes in Drug Delivery—A Comprehensive Review on Its Structural Components, Preparation Techniques and Therapeutic Applications

    No full text
    Cubosomes are lipid vesicles that are comparable to vesicular systems like liposomes. Cubosomes are created with certain amphiphilic lipids in the presence of a suitable stabiliser. Since its discovery and designation, self-assembled cubosomes as active drug delivery vehicles have drawn much attention and interest. Oral, ocular, transdermal, and chemotherapeutic are just a few of the drug delivery methods in which they are used. Cubosomes show tremendous potential in drug nanoformulations for cancer therapeutics because of their prospective advantages, which include high drug dispersal due to the structure of the cubic, large surface area, a relatively simple manufacturing process, biodegradability, ability to encapsulate hydrophobic, hydrophilic, and amphiphilic compounds, targeted and controlled release of bioactive agents, and biodegradability of lipids. The most typical technique of preparation is the simple emulsification of a monoglyceride with a polymer, followed by sonication and homogenisation. Top-down and bottom-up are two different sorts of preparation techniques. This review will critically analyse the composition, preparation techniques, drug encapsulation approaches, drug loading, release mechanism and applications relevant to cubosomes. Furthermore, the challenges faced in optimising various parameters to enhance the loading capacities and future potentialities are also addressed

    Design-of-Experiments (DoE)-Assisted Fabrication of Quercetin-Loaded Nanoemulgel and Its Evaluation against Human Skin Cancer Cell Lines

    No full text
    Background: Quercetin (QCT) is a natural polyphenolic flavonoid showing great potential in the treatment of skin cancer. However, its use is limited owing to its poor water solubility, poor absorption, quick metabolism and excretion, as well as low stability. Preparation of nanoemulgel has been proven to be an effective approach to deliver the drugs topically due to various advantages associated with it. Objectives: This study aimed to prepare stable nanoemulgel of QCT using a Design-of-Experiments (DoE) tool for optimization, to characterize and to assess its in vivo toxicity and efficacy against human cancer cell lines in vitro. Methods: An ultrasonication emulsification method was used for the preparation of QCT-loaded nanoemulsion (QCT@NE). Box–Behnken design was used for the optimization of developed nanoemulgel. Then, in vitro characterization of prepared nanoemulsion was performed using Fourier Transform-Infra Red (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), particle size analysis, determination of zeta potential and entrapment efficiency (%EE). Further, the developed QCT-loaded nanoemulgel (QCT@NG) was characterized in vitro using texture profile analysis, viscosity and pH determination. Eventually, the cell cytotoxicity studies of the prepared nanoemulgel were performed on the skin cancer cell lines A431 followed by an acute toxicity and skin irritation study on male wistar rats in vivo. Results: The developed QCT@NE was found to be nanometric in size (173.1 ± 1.2 nm) with low polydispersity index (0.353 ± 0.13), zeta potential (−36.1 ± 5.9 mV), and showed good %EE (90.26%). The QCT@NG was found to be substantially more effective against the human skin carcinoma (A431) cell lines as compared to plain QCT with IC50 values of 108.5 and 579.0 µM, respectively. Skin irritation study showed no sign of toxicity and ensured safety for topical application. Hematological analysis revealed no significant differences between the treatment and control group in any biochemical parameter. In the nanoemulgel treatment group, there were no discernible differences in the liver enzymes, bilirubin, hemoglobin, total leukocyte and platelet counts as compared to the control group. Conclusions: The optimized QCT@NG was found to be an ideal and promising formulation for the treatment of skin cancer without showing skin irritation and organ toxicity

    A review of nanomaterials from synthetic and natural molecules for prospective breast cancer nanotherapy

    Get PDF
    Breast cancer being one of the most frequent cancers in women accounts for almost a quarter of all cancer cases. Early and late-stage breast cancer outcomes have improved dramatically, with considerable gains in overall survival rate and disease-free state. However, the current therapy of breast cancer suffers from drug resistance leading to relapse and recurrence of the disease. Also, the currently used synthetic and natural agents have bioavailability issues which limit their use. Recently, nanocarriers-assisted delivery of synthetic and natural anticancer drugs has been introduced to the breast cancer therapy which alienates the limitations associated with the current therapy to a great extent. Significant progress has lately been made in the realm of nanotechnology, which proved to be vital in the fight against drug resistance. Nanotechnology has been successfully applied in the effective and improved therapy of different forms of breast cancer including invasive, non-invasive as well as triple negative breast cancer (TNBC), etc. This review presents a comprehensive overview of various nanoformulations prepared for the improved delivery of synthetic and natural anticancer drugs alone or in combination showing better efficacy and pharmacokinetics. In addition to this, various ongoing and completed clinical studies and patents granted on nanotechnology-based breast cancer drug delivery are also reviewed

    Chronicles of Nanoerythrosomes: An Erythrocyte-Based Biomimetic Smart Drug Delivery System as a Therapeutic and Diagnostic Tool in Cancer Therapy

    No full text
    Recently, drug delivery using natural biological carriers has emerged as one of the most widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory, along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary features such as long blood circulation times, the ability to escape immune system, the ability to release the drug gradually, the protection of drugs from various endogenous factors, targeted and specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in various fields of biomedical sciences. Their journey over the last two decades is escalating with fast pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers, gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic tool for the identification of different tumors

    Development of erlotinib-loaded nanotransferosomal gel for the topical treatment of ductal carcinoma<i> in situ</i>

    No full text
    Aims: This study was aimed to formulate erlotinib (ERL)-loaded transferosomal gel (ERL@TG) intended for topical application for the treatment of ductal carcinoma in situ. Materials & methods: The optimized process involved a thin-film hydration method to generate ERL-loaded transferosomes (ERL@TFS), which was incorporated into a carbopol gel matrix to generate ERL@TG. The optimized formulation was characterized in vitro followed by cytotoxicity evaluation on MCF-7 breast cancer cell lines and acute toxicity and skin irritation studies was performed in vivo. Results: In a comparative assessment against plain ERL, ERL@TG displayed enhanced efficacy against MCF-7 cell lines, reflected in considerably lower IC50 values with an enhanced safety profile. Conclusion: Optimized ERL@TG was identified as a promising avenue for addressing ductal carcinoma in situ breast cancer.Plain language summary: Despite progress, breast cancer remains a significant cause of death. This study aimed to revolutionize the treatment of noninvasive ductal carcinoma in situ, a type of breast cancer, by developing a special gel that can be applied directly to the breast. The developed gel was in the nanoform, a ‘nanotransfersomal’ gel that contained erlotinib, a potent drug for breast cancer. To ensure its effectiveness, we evaluated the erlotinib-loaded transfersomal gel through various tests. The results confirmed that the gel was nano-sized and loaded with a high amount of erlotinib. Animal studies were conducted to check if the prepared gel caused any skin irritation and interestingly, there was no irritation observed on the animals’ skin. Furthermore, we treated breast cancer cells with the developed gel using a method called MTT assay and the results showed improved cell-killing activity in comparison to plain drug. In conclusion, this special gel represents a breakthrough in breast cancer treatment. It offers hope for better outcomes in the fight against this disease. This innovative approach involves directly applying the gel on the affected area topically to increase patient compliance and decreasing side effects of drugs. This could potentially transform ductal carcinoma in situ breast cancer treatment, bringing us closer to improved treatments and outcomes.</p

    Development and Optimization of Methylcellulose-Based Nanoemulgel Loaded with Nigella sativa Oil for Oral Health Management: Quadratic Model Approach

    No full text
    The present study aimed to develop a local dental nanoemulgel formulation of Nigella sativa oil (NSO) for the treatment of periodontal diseases. NSO purchased from a local market was characterized using a GC&ndash;MS technique. A nanoemulsion containing NSO was prepared and incorporated into a methylcellulose gel base to develop the nanoemulgel formulation. The developed formulation was optimized using a Box&ndash;Behnken statistical design (quadratic model) with 17 runs. The effects of independent factors, such as water, oil, and polymer concentrations, were studied on two dependent responses, pH and viscosity. The optimized formulation was further evaluated for droplet size, drug release, stability, and antimicrobial efficacy. The developed formulation had a pH of 7.37, viscosity of 2343 cp, and droplet size of 342 &plusmn; 36.6 nm. Sustained release of the drug from the gel for up to 8 h was observed, which followed Higuchi release kinetics with non-Fickian diffusion. The developed nanoemulgel formulation showed improved antimicrobial activity compared to the plain NSO. Given the increasing emergence of periodontal diseases and antimicrobial resistance, an effective formulation based on a natural antibacterial agent is warranted as a dental therapeutic agent
    corecore