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Breast cancer being one of the most frequent cancers in women accounts for
almost a quarter of all cancer cases. Early and late-stage breast cancer outcomes
have improved dramatically, with considerable gains in overall survival rate and
disease-free state. However, the current therapy of breast cancer suffers from
drug resistance leading to relapse and recurrence of the disease. Also, the
currently used synthetic and natural agents have bioavailability issues which
limit their use. Recently, nanocarriers-assisted delivery of synthetic and natural
anticancer drugs has been introduced to the breast cancer therapy which
alienates the limitations associated with the current therapy to a great extent.
Significant progress has lately been made in the realm of nanotechnology, which
proved to be vital in the fight against drug resistance. Nanotechnology has been
successfully applied in the effective and improved therapy of different forms of
breast cancer including invasive, non-invasive as well as triple negative breast
cancer (TNBC), etc. This review presents a comprehensive overview of various
nanoformulations prepared for the improved delivery of synthetic and natural
anticancer drugs alone or in combination showing better efficacy and
pharmacokinetics. In addition to this, various ongoing and completed clinical
studies and patents granted on nanotechnology-based breast cancer drug
delivery are also reviewed.
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1 Introduction

Breast cancer is the most common form of cancers amongst all types with 2.3 million
cases diagnosed annually (Figueroa et al., 2021). Breast cancer-related mortality in women in
the United States alone accounts for about 41,000 per year, or 15% of all cancer-related
deaths (Liang et al., 2020). Early detection and extensive treatment techniques has decreased
the cancer mortality in the last 2 decades improving the prognosis of breast cancer patients
(Ganz and Goodwin, 2015). Considerable advancements have been made in the screening,
diagnosis and treatment options for breast cancer (Fahad Ullah, 2019). Breast cancer starts
with physiologically and molecularly diverse conditions in the breast, risk factors varying
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according to the type and genetic predisposition. Most notably
mutations in the BRCA1 or BRCA2 genes remain significant
component (Feng et al., 2018).

Treating breast cancer using estrogen receptor (ER) antagonists
is the most established molecular targeted therapy approach as
compared to other receptors (Sharma et al., 2018; Damodaran
and Hortobagyi, 2021). Furthermore, the widespread use of
tamoxifen, a selective ER modulator in treating breast cancer has
been attributed with considerable advances in cure rates, quality of
life, and preventing disease over the past quarter-century.
Alternative therapies are also available for estrogen-dependent
breast cancer which includes the use of aromatase inhibitors (AI)
(anastrozole, letrozole, and exemestane) that impede the
biosynthesis of androgens in tumor by down-regulating the
aromatase enzyme (Chumsri et al., 2011). This results in
decreased estrogen levels in tumor cells. Combination of receptor
targets with chemotherapy at the molecular level have also been a
significant step forward in the breast cancer treatment. Some of these
combination targets include human epidermal growth factor
receptor-2 (HER2) and the vascular endothelial growth factor
(VEGF), which are used in tandem with chemotherapy drugs
such as trastuzumab and bevacizumab (Munagala et al., 2011;
Toss and Cristofanilli, 2015). In addition, inhibitors of
downstream pathways such as PI3K/AKT/mTOR and RAS/MEK/
ERK have the potential to be used therapeutically in some cases.
There have also been reports of other tyrosine kinases being involved
in cancer cell cancer progression and metastasis, such as insulin-like
growth factor receptor (IGFR), poly-ADP ribose polymerase
(PARP), and matrix metalloproteinases (MMP) inhibitors
(Masoud and Pagès, 2017a). Several of these targeted medications
showed significant improvements in the survival and prognosis of
breast cancer patients. The MMP inhibitors work by blocking the
activity of MMPs, a family of enzymes involved in the breakdown of
extracellular matrix (ECM) proteins. ECM breakdown is an
important step in cancer invasion and metastasis. By inhibiting
MMPs, MMP inhibitors may prevent cancer cells from invading and
spreading to other parts of the body. These MMP inhibitors include
Batimastat, Marimastat, Prinomastat, BAY 12–9,566, Tanomastat,
etc., The PARP inhibitors work by blocking the activity of poly
(ADP-ribose)polymerase (PARP), an enzyme involved in DNA
repair. PARP inhibitors specifically target cancer cells that have
mutations in the BRCA1 and BRCA2 genes, which are involved in
DNA repair. By inhibiting PARP, these cells are unable to repair
DNA damage, leading to cell death. Some examples of drugs acting
as PARP inhibitors are Olaparib, Rucaparib, Niraparib, Talazoparib,
Veliparib, etc.

Significant advancements weremade recently in the research aimed
at targeting themolecular pathways of breast cancer, which have helped
in understanding the targets at molecular level and developing targeted
therapies to tackle it. Identifying and blocking the pathways that
promote or perpetuate the proliferation and invasion of breast
carcinoma cells is required for long-term efficacy in treating breast
cancer. Over the past 2 decades, various monoclonal antibodies and
small-molecule inhibitors have been proposed in clinical trials for their
anticancer properties (Schlotter et al., 2008). Breast cancer has several
molecular target pathways, including the EGFR Family, the vascular
endothelial growth factor (VEGF) family, the RAS/MEK/ERKPathway,
cell cycle and apoptosis, estrogen receptor (ER) antagonist, targeting

invasion and metastasis, insulin-like growth factor inhibitors, and the
steroid hormone receptor.

However, the existing breast cancer therapy suffers from various
issues including recurrence and relapse. The recurrence and relapse
of breast cancer is mainly due to the resistance to conventional
chemotherapeutic drugs and it is the leading cause of mortality
despite significant research breakthroughs in the breast cancer
therapy (Gote et al., 2021). Pharmacokinetics and metabolism of
the tumor changes by the drug resistance and tumor protein P53,
ATP-binding cassette (ABC), microtubules (MT), permeability
glycoprotein (P-gp), HER2, topoisomerase, and breast cancer
type 1 (BRAC1) lead to drug resistance in various ways. It also
affects the mitochondrial metabolism, fatty acid synthesis, redox
metabolism, and glycolysis in the breast cancer cells. All these
resistance pathways are induced by the drugs including lapatinib,
trastuzumab, adriamycin, paclitaxel, and tamoxifen (Gonzalez-
Angulo et al., 2007). Owing to the fact that tumors contain
distinct cancer-causing genes which frequently undergo several
mutations, modified treatments can be achieved by identifying
innovative multi-target agents and combining them.
Chemotherapeutic drugs given intravenously result in widespread
systemic dispersion and drug toxicity in cancer cells (Vasan et al.,
2019). As a result, therapeutic medications that target non-
cancerous cells and tumor locations are unable to provide
adequate drug dose, resulting in poor therapy. Furthermore, the
existing treatment is beset by low solubility and bioavailability of
drugs at cancer locations. Numerous techniques are being adopted
in order to overcome the drug resistance including application of
nanotechnology, development of novel synthetic analogues of
currently used drugs, repurposing drugs, combination of drugs,
immunotherapy, patient monitoring, and synthetic lethality. Among
these techniques, application of nanotechnology in preparing the
nanoformulations of existing synthetic and natural anticancer
molecules has garnered much attention and significant
advancements have been made in this field.

Nanotechnology is one of the fastest growing fields of science and
technology in the world; and it is frequently applied in breast cancer
theranostics. As time progresses, nanotechnology aids in the discovery
of novel research methodologies in oncology, even at the molecular
level. Nanoparticles are unique in different ways and they can be used as
nanomedicine in therapeutic applications. This review focuses on the
recent studies aimed to enhance the targeted delivery of anticancer
molecules of synthetic and natural origin using nanotechnology and its
role in combating the drug resistance. Moreover, this article includes a
research study based on the selection of an anticancer dose using
combination index since drug combinations can have synergistic,
antagonistic, or additive effects. Using the combination index, the
dose of a combination of natural and synthetic drug was determined
on two breast cancer cell lines, MCF-7 and T47D.

2 Nanomaterials to combat drug
resistance

Drug resistance has become a significant concern in cancer
therapy as the number of cancer treatment options is growing day by
day. Cancer progression and a bad prognosis are caused by
multidrug resistance, which results in the failure of cancer
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therapy. The mechanisms underlying drug resistance are well
understood now. Interstitial fluid pressure, overexpression of the
ATP binding cassette (ABC) efflux transporters, faulty apoptotic
machinery, and a hypoxic or acidic tumor microenvironment are
some of the factors implicated in medication resistance (Yao et al.,
2020). Nanotechnology-based drug delivery devices play a crucial
role in the treatment of cancer patients who developed drug
resistance to conventional treatments. Nanoparticles that target
the processes involved in drug resistance may be able to improve
their effectiveness (Mba and Nweze, 2021). Targeting efflux
transporters, which are the members of ABC transporter family,
also play a significant role in the development of drug resistance.
This transporter causes the drug to be effluxed out of the cell,
reducing the therapeutic effect. P-glycoprotein (P-gp) is the most
important efflux transporter and is overexpressed in some drug-
resistant cancers (Waghray and Zhang, 2018; Robinson and
Tiriveedhi, 2020). Nanoparticles can assist in bypassing the
medication through the efflux transporter in these circumstances
and polymer based nanoparticles can inhibit P-gp and change the
regulation of drug release (Peng et al., 2020).

It has been reported that the nanoparticles containing COX-2
inhibitors along with doxorubicin were able to combat the
multidrug resistance of breast cancer cells (Zhang et al., 2019).
Furthermore, by suppressing the ABC transporters expression, co-
delivery of anticancer agents with P-gp-targeted si-RNA using
nanoparticles were found to aid in the treatment of drug-resistant
tumors (Mirzaei et al., 2022). It was revealed that the lipid-based
nanoparticles containing surfactant and co-surfactant helped in the
prevention of drug from being effluxed by P-gp (Mangla et al., 2020).
Cancer cells that have malfunctioned apoptotic machinery are able to
circumvent apoptosis and improve their survival leading to drug
resistance. Discrepancies in the apoptotic pathway are frequently
produced by de-regulation of the nuclear factor-kappa B (NF-κB)
and the anti-apoptotic protein Bcl-2; both of which are
overexpressed in many tumors (Rinkenbaugh and Baldwin, 2016;
Singh et al., 2019a). The nanoparticle-based delivery system
exhibited improved cytotoxicity by causing apoptosis via
downregulation of NF-κB and Bcl-2 expression along with the
suppression of efflux transporter expression, thereby promoting
apoptosis (Haider et al., 2022). The upregulation of drug efflux
proteins has been shown to be mediated by hypoxia. Hypoxia
creates a oxygen gradient inside the tumor which increases the
heterogeneity of tumor and promotes more aggressive phenotype in
the tumor cell itself. A hypoxia-inducible factor (HIF-1) has been
identified to be overexpressed in a number of human cancer forms
and plays a key role in treatment of drug resistance (Jun et al., 2017).
Another therapeutic technique to overcome drug resistance is to target
HIF-1 and nanoparticles such as PEGylated or non-PEGylated
liposomes carrying HIF-1 siRNA were found to assist in treating
hypoxia and drug resistance in cancer cells (Hajizadeh et al., 2020).

3 Nanomaterials from synthetic
molecules

The drug therapy of breast cancer is still suboptimal owing to
various issues affecting the efficacies of the currently used synthetic
drugs. Major challenges associated with the existing therapy include

insufficient biodistribution of drugs in the body which further
decreases in the tumor tissues (Senapati et al., 2018). Drugs are
more distributed to the healthy tissues causing toxicity and less into
the tumor causing decreased efficacy. The microenvironment of
tumor and drug resistance is other reason responsible for problem in
the conventional therapy (Mansoori et al., 2017). Nanotechnology
can be applied to overcome some of these limitations as they offer
larger surface area-to-volume ratio providing good opportunity to
manipulate the surface properties of drugs (Navya et al., 2019).

The fundamental goals of nanomedicine are to accurately
diagnose and treat patients with minimal adverse effects; as well
as to evaluate the efficiency of non-invasive therapeutic techniques
(Longo et al., 2021). Nanomaterials used as carriers for the
anticancer drugs utilized in the breast cancer treatment are
broadly classified into two categories: organic and inorganic.
Liposomes, micelles, dendrimers, and cyclodextrin are examples
of organic materials; whereas inorganic materials include iron oxide,
gold nanoparticles, and mesoporous silica nanoparticles (Gupta
et al., 2021) (Figure 1).

Nanotechnology can help achieve improved treatment in many
ways including cancer targeting, increased endocytosis and extended
circulation time which improves the access of anticancer drugs to
the tumor sites (Figure 2). Moreover, encapsulating the drugs into
the nanocarrier improves their solubility, stability and controlled
release. Using nanocarriers, even the combination of drugs can be
co-delivered to the target site in order to achieve synergistic
anticancer activities. The magnetic nanoparticles on the other
hand can also be utilized for the guided therapy, imaging as well
as in drug delivery using external magnetic filed.

Numerous studies have been conducted on nanoparticles to
assess their applications in breast cancer research. Some of the
important nanocarriers used in breast cancer treatment as well as the
dose and mode of administration are summarized in Table 1. These
nanoformulations shown including NLCs, liposomes, phospholipid
complexes, transferrin conjugates, solid lipid nanoparticles, β-
cyclodextrin inclusion complexes, PEGylated liposomes, albumin-
coated nanocrystals, cannabidiol-loaded microparticles, and
chitosan-folate-coated mesoporous silica particles, have shown
prominent effects against breast cancer cells. Synthetic drugs
including exemestane, sulforaphane, tamoxifen, vitamin D3,
etoposide and their combinations have been delivered using the
nanoparticulate systems for effective breast cancer therapy.

One of the synthetic drugs, Exemestane (EXE) which is a
steroidal aromatase inhibitor and has been approved for the
breast cancer therapy, was incorporated into NLCs as the drug
encounters from the problem of limited water solubility and
therefore, lesser oral bioavailability (Singh et al., 2019b). The
EXE-NLCs showed extended release of the drug for upto 24 h
in vitro and an augmented bioavailability by 3.9 folds was
observed. Also, the permeation across the gut wall was shown to
be improved as compared to the plain drug suspension. In an effort
to explore the effects of combination of synthetic and natural
molecules, tamoxifen (TAM) was loaded with sulforaphane
(SFN) into a NLC system with the aim to enhance their oral
delivery and to reduce the toxicity of TAM using SFN (Mangla
et al., 2020). Formulation into NLCs was shown to enhance the
intestinal permeability of TAM and SFN resulting into augmented
oral bioavailability of TAM and SFN by 5.2 and 4.8 folds,
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respectively. Liposomes have been proved to be one of the most
successful nanocarriers for the oral delivery of anticancer drugs;
however, the harsh GI environment poses a challenge for effective
drug delivery using liposomes. PEGylation has been shown to
protect these liposomes for getting degraded in the GI and
improves the oral drug delivery of drugs. In one such study, EXE
was loaded into PEGylated liposomes and the stability in simulated
gastric fluid was assessed and compared with conventional
liposomes (Singh et al., 2020). PEGylation was reported to
protect the liposomes from acidic degradation thereby improving
the intracellular uptake of EXE as compared to the plain liposomes.

Similarly, the synergistic combination of vitamin D3/
phospholipid complex and the anticancer drug etoposide (ETP)
was explored by preparing vitaminD3/phospholipid decorated ETP-
loaded nanomicelles (Agwa et al., 2021). This study aimed to target
the drug into breast cancer cell lines using vit. D3 receptors which
are overexpressed on breast cancer cells. The results showed
improved anticancer activity of ETP on the tested cell lines
without any toxicity to the lung fibroblasts demonstrating good
selectivity of the prepared decorated nanomicelles. The use of
docetaxel (DTX), one of the very useful drugs for breast cancer,
is limited owing to its low solubility and permeability; therefore,
DTX-phospholipid complex (DTX@PLC) was prepared and loaded
into a self-microemulsifying drug delivery system (SMEDDS)
(Wang et al., 2020). The DTX@PLC-SME increased the surface
area and therefore the dissolution and permeability of DTX owing to
the formation of a microemulsion in the gastrointestinal fluid. The

action of drug TAM citrate was targeted to breast cancer cells in a
strategy where TAM-loaded transferrin-conjugated-solid lipid
nanoparticles (SLNs) were prepared with the aim to reduce its
toxicity to uterus and other vital organs (Bhagwat et al., 2020).
Results revealed improved cytotoxicity of TAM in a time- and
concentration-dependent manner on MCF-7 cells as compared to
the plain TAM solution.

A ternary inclusion complex of Genistein (GT) was prepared
using β-cylcodextrin (β-CD) as complexing agent, while D-α-
tocopherol-polyethylene glycol 1,000 succinate (TPGS) as ternary
substance (Zafar et al., 2022). The prepared complex showed
remarkable solubility enhancement as well as increased
antioxidant and cell viability activity in vitro against human
breast cancer cell lines MCF-7 in comparison to the pure GT.
Similarly, the combination of doxorubicin (DOX) and
umbelliprenin was loaded to PEGylated DSPC liposomes using
microfluidic and thin-film methods and compared (Gkionis et al.,
2020). The former technique produced particles with more
homogeneous shape and size and an improved cytotoxicity
against breast cancer cell lines. The poor aqueous solubility and
stability of carfilzomib (CFZ) was addressed by preparing its
nanocrystals which were subsequently coated with albumin to
achive enhanced formulation stability and targeted drug delivery
(Park et al., 2019). Improved anticancer activity of the developed
formulation was observed with enhanced metabolic stability and
improved cellular uptake. Therefore, encapsulation into the
nanoparticles has proved to be an effective strategy in order to

FIGURE 1
Various nanocarriers used for the delivery of synthetic anticancer drugs.
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improve the biopharmaceutical properties of drugs and their
combinations; and a sustained release of drug molecules was
obtained over a long period of time.

4 Nanomaterials from natural
molecules

Traditional medicines play an important role in many
healthcare systems across the world, particularly in developing
countries. According to a World Health Organization (WHO)
estimate, traditional medicine covers the essential health
requirements of around 80% of the population in impoverished
countries, which is increasing day by day (World Health
Organization, 2013). Natural anticancer medications are in
increasing demand because they are efficient cancer cell
inhibitors. Herb refers to a plant or their derived component that
is used for its scent, flavor, and/or therapeutic properties, as well as
for other purposes (El-Sayed and Youssef, 2019). Conventional
medicinal herbs are naturally occurring plant-derived
medications that are used to treat various types of diseases
including cancer in local or regional healing traditions for
hundreds of years with little or no chemical change to their
formulation (Mahomoodally, 2013; Li et al., 2018). However,

many natural molecules suffer from biopharmaceutical issues
including poor solubility, low bioavailability, instability and poor
permeability (Patra et al., 2018; Kesharwani and Bhat, 2020).
Numerous novel drug delivery systems have been developed
during the last 2 decades to function as carriers for a variety of
bioactive chemicals or herbs; with the primary aim of increasing
their bioavailability, reducing adverse effects, and avoiding drug
degradation (Patra et al., 2018; Yap et al., 2021; Chavda et al., 2022).
Moreover, these delivery systems improve the therapeutic efficacy,
enhance stability and target the drugs to specific site and prevent first
pass metabolism.

Treatment of breast cancer is undergoing extensive progress
majorly with targeted therapies bypassing the severe side-effects of
conventional chemotherapy (Masoud and Pagès, 2017b; Bukhari,
2022). The effectiveness of chemotherapy is restricted by the cancer
cells’ resistance. As alternatives, phytochemicals and other natural
molecules provide promising moieties for breast cancer prevention,
treatment and therapy of difficult-to-treat mammary malignancies
(Israel et al., 2018; Gregoriou et al., 2021). Phytochemicals
significantly decrease the risk of cancer spread by direct tumor
growth inhibition, apoptosis induction, and inhibition of tumor
metastasis. Smart therapeutic approaches are the need of the hour
for the treatment of various cancer types (Senapati et al., 2018).
Numerous plant-derived phytochemicals have been found to have

FIGURE 2
Mechanisms of nanocarriers as drug delivery system in breast cancer.
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anticancer potentials and nanotechnological approaches of
bioavailability enhancement are gaining rapid interest due to
their tremendous potentials (Khan and Gurav, 2018; Dhupal and
Chowdhury, 2020; More et al., 2021).

Niosomes, solid lipid nanoparticles, silver nanoparticles, gold
nanoparticles, polymeric nanoparticles, liposomes, nanocapsules,
and nanospheres are some of the delivery systems available for
delivery of plant-based drugs including curcumin, cordycepin,
balanocarpol, diallyl disulphite, epigallocatechin, gallic acid,
sulphoraphane, resveratrol, punicalagin, ursolic acid, transferrin,
bleomycin, and noscapine. Important phytochemicals showing anti-
breast cancer activity and their corresponding developed
nanoformulations are given in Table 2. These phytochemicals are
found to have good efficacy in the treatment of breast cancer
through various mechanisms. They are reported to mediate
several physiological processes such as cellular uptake, pro-
apoptotic activity, cytotoxicity, intracellular ROS generation, Bad,
Bax, Caspase 3 and 9 protein level, nuclear shrinkage, stability,
morphological change, cell migration, antioxidant activity, growth

inhibitory activity, MMP-9 gene expression, etc. In contrast, they
also decrease organ toxicities, Bcl-2 protein level, cell migration,
P13K, pAKT level, pmTOR protein, cell viability, etc.

Various phytochemicals and plant extracts showing promising
activities against breast cancer cell lines were further incorporated
into nano-carriers in order to improve their activity and to combat
their bioavailability issues. Metal-based nanoparticles (NPs) have
shown considerable potential and a number of studies were reported
where silver and gold nanoparticles of phytochemical compounds
and plant extracts were prepared and tested in vitro against breast
cancer cell lines. Silver and gold nanoparticles are noble
nanoparticles with optimized shapes and sizes which were found
to be effective as carriers in the cancer therapy.

Previously, silver nanoparticles (Ag-NPs) of Agrimoniae herba
extract exhibited strong antineoplastic effect on A549 cells,
indicating better antitumor effects than the extract alone (Qu
et al., 2014). Similarly, the Ag-NPs of Beta vulgaris extract were
also prepared and tested against human breast cancer (MCF-7),
pharynx (Hep-2) and lung (A549) cancer cell lines (Venugopal et al.,

TABLE 1 Synthetic drugs and their combinations delivered using nanotechnology for the treatment of breast cancer.

Drug (s) Nanocarriers Method of
preparation

In vitro/in vivo studies Cell lines Dose of
drug

Route of
administration

Ref

Exemestene NLCs Ultra sonication Particle size, Zeta potential,
TEM, XRD, DSC, In vivo
pharmacokinetic study

MCF-7 25 mg Oral Singh et al.
(2019b)

Suforaphane
and tamoxifen

NLCs Ultrasonication Particle size, Zeta potential,
TEM, XRD, DSC, In vivo
pharmacokinetic study,
Acute toxicity

TAM:
5 mg/kg

Oral Mangla et al.
(2020)

SFN:
15 mg/kg

Exemestene Liposomes Thin film
hydration

Particle size, Zeta potential,
TEM, XRD, DSC, In vivo
pharmacokinetic study

MCF-7 30 mg/kg Oral Singh et al. (2020)

Vitamin D3 +
etoposide

Phospholipid
complex

Solvent
evaporation

Particle size, Zeta potential,
TEM, FTIR, In vivo bio
distribution study, In vivo
anti-tumor efficacy study,
Ttoxicity study

MDA MB-231 5 mg/kg Intravenous Agwa et al. (2021)

MCF-7 7.5mg//kg

Docetaxel Phospholipid
complex

Solvent
evaporation

In vitro characterization,
Cellular uptake study

Caco-2 Oral Wang et al. (2020)

Tamoxifen Transferrin conjugate
Solid lipid
nanoparticles

Hot emulsification Particle size, Zeta potential,
XRD, TEM, In vitro drug
release

MCF-7 IV Bhagwat et al.
(2020)

Genistein β-Cyclodextrins
inclusion complex

Solvent
evaporation

XRD, IR, NMR MCF-7 Zafar et al. (2022)

Doxorubicin +
Umbelliprenin

PEGylated liposomes Thin film Zeta potential, Particle size,
In vitro drug release

MCF-7,
MDA-MB
231, BT-474

10–500 μg Gkionis et al.
(2020)

Carfilzomib Albumin coated nano
crystals

Film hydration Particle size, Zeta potential,
XRD, TEM

MDA-MB-
231, MCF-7,
HCC 1943,
and HCC1937

3 mg/kg IV Park et al. (2019)

Paclitaxel + Cannabidiol loaded
micro particles

Homogenization Particle sixe, Zeta potential,
XRD, TEM

MCF-7 and
MDA-
MB-231

3.65 mg/
mL

IV Fraguas-Sánchez
et al. (2020)Doxorubicin

Anastrozole Chitosan-folate
coated mesoporous
silica nanoparticles

Ultra sonication Particle size, Zeta potential,
XRD, SAXS, FTIR

MCF-7 1 mg/kg IV Bhavsar et al.
(2019)
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2017a) and the results showed improved permeability and efficacy.
In a similar study, Ag-NPs of Syzygium aromaticum extract showed
in vitro cytotoxic activity against Hep-2 and MCF-7 cells and the
results suggested its use as cancer therapeutics (Venugopal et al.,
2017b). In yet another study, green tea, turmeric and garlic extracts-
mediated Ag-NPs were prepared and characterized. Results revealed
that the Ag-NPs prepared from turmeric extracts exhibited superior
antioxidant and cytotoxic activity in comparison to other extracts on
all four tested cancer cell lines including HeLa, MCF-7, A549 and
Hep-2, in vitro (Arumai Selvan et al., 2018). Ag-NPs of Jasminum
officinale L. leaves extract also showed high cytotoxicity against
MCF-7 and -5,637 cells and an IC50 values of 13.09 μg/mL and
9.3 μg/mL, respectively were obtained, proving it to be an effective
approach (Elhawary et al., 2020). Ag-NPs of Cuminum cyminum L.
seed extract were also reported to posses anticancer activities when
tested on MCF-7 and AU565 (human breast adenocarcinoma
metastatic) cell lines (Dinparvar et al., 2020).

Similarly, gold NPs (Au-NPs) are gold particles of nanosized range
(1–100 nm) which are being used in many studies as carriers for
delivering anticancer agents of natural origin (Singh et al., 2021). In
one such study, Au-NPs of Nerium oleander were prepared,
characterized and anticancer potential was tested against MCF-7
cells. Results showed that the prepared Au-NPs induced apoptosis
in the tested cell lines selectively (Barai et al., 2018). Recently, Au-NPs of
phytochemicals of nano-ayurvedic drugs also called as “Nano Swarna
Bhasma” were reported for the treatment of metastatic breast cancer
(Khoobchandani et al., 2020). The characteristic features of Au-NPs of
being biogenic and easy to synthesize, resulted in diverse research and

applications. The anticancer phytocompound Withanolide-A
conjugated with Au-NPs was also reported where the prepared
nanoconjugate significantly induced SKBR3 cell growth blockage at
half of the maximal-active concentration in comparison to the
Withanolide-A alone (Tabassam et al., 2020).

Various other nanoformulations of phytochemicals were also
prepared and screened against the human breast cancer cell lines
such as niosomes, nanoemulsions, and nanovesicles. The
nanoniosomes (a non-ionic surfactant based nanovesicles) of the
phytochemical lawsone were fabricated by film-hydration method
using non-ionic surfactants and cholesterol. The in vitro study
exhibited significant antitumor efficacy of the nanoformulation
against the MCF-7 cell lines in comparison to the Lawsone solution
(Barani et al., 2018). In another study, diosgenin was loaded into
niosomes in order to improve its solubility profile. The method
adopted to prepare the niosomes was thin-film hydration technique
and the cytotoxicity screening was performed on HepG2 cell line. The
prepared niosomes showed good loading efficiency (89%) and the
in vitro findings revealed that the niosomes exhibited enhanced
anticancer effects 28.32% higher than the free diosgenin (Hajizadeh
et al., 2019). Curcumin-loaded deformable nanovesicles were obtained
by thin-film hydration technique followed by extrusion. Cytotoxicity
studies were performed on MCF-7 cell lines using MTT assay
technique. The prepared nanovesicles showed an IC50 of 20 μg/mL
suggesting them to be successful candidates for the breast cancer
therapy (Abdel-Hafez et al., 2018).

Resveratrol, a polyphenolic phytoalexin has significant
pharmacological properties; however, it exhibits poor aqueous

TABLE 2 Phytochemicals-based nanoformulations for the treatment of breast cancer.

Phytochemicals Developed nanoformulation Tested cell
lines

References

Balanocarpol Niosomes ZR-75 Obeid et al. (2020)

Cordycepin PLGA nanoparticles MCF-7 Marslin et al. (2020)

Curcumin Nanoliposmes/Dendrosomes sodium alginate nanoparticles/chitosan coated
nanoliposomes/PVA cellulose nanocrystal hydrogels

4-T1/MCF-7 Hasan et al. (2014), Farhangi et al. (2015), Hasan
et al. (2020), Hussein et al. (2021)

Diallyl disulphite Solid lipid nanoparticles/Anti RAGE antibody conjugated solid lipid
nanoparticles

MCF-7/MDA-
MB-231

Talluri et al. (2016), Talluri et al. (2017)

Epigallocatechin Solid lipid nanoparticles/Bombesin conjugated solid lipid nanoparticles MDA-MB-231 Radhakrishnan et al. (2016), Radhakrishnan et al.
(2019)

Gallic acid Gum Arabic stabilized nanoparticles Mcf/MDA-
MB-231

Hassani et al. (2020)

Sulphoraphane Pegylated nanoparticles/Iron oxide gold nanoparticles/Nanolipid carrier
system

SKBR3/MCF-7/
t47d

Danafar et al. (2017a)

Resveratrol TPGS-Resveratrol-Solid Lipid Nanoparticles SKBR3/PR cells Wang et al. (2021)

Punicalagin PGA/PEG nanoparticles MCF-7 Shirode et al. (2015)

Ursolic acid Liposomes MDA-MB-231 Caldeira de Araújo Lopes et al. (2013)

Transferrin Solid Lipid Nanoparticles MCF-7 Bhagwat et al. (2020)

Bleomycin (BLM) Gold nanoparticles MDA-MB-231 Yang et al. (2016)

Artemisia Absinthium Polymeric NPs MCF-7/MDA-
MB-231

Mughees et al. (2020)

Noscapine Nanoparticles by pH coacervation technique SK-BR-3 Sebak et al. (2010)

Frontiers in Pharmacology frontiersin.org07

Kumar et al. 10.3389/fphar.2023.1149554

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1149554


solubility issues. In lieu of its poor bioavailability issues, nanocarrier
of resveratrol loaded NPs were synthesized by the emulsification
method using Pluronic-F127 block copolymer and D-α-tocopheryl
polyethylene glycol 1,000 succinate (Vitamin E-TPGS). The
prepared NPs showed spherical shape, nanosize (179 ± 22 nm),
good encapsulation efficiency (73% ± 0.9%) and optimum drug
loading (6.2% ± 0.1%) and were reported to have remarkable efficacy
against breast cancer cell lines (Gregoriou et al., 2021). The restricted
use of anticancer phytochemical sulforaphane was successfully
modified with the help of a reliable micellar drug delivery system
using monomethoxy-poly (ethylene glycol)-poly (ε-caprolactone)
(mPEG-PC) polymer. The anticancer efficacy studied on MCF-7
cells suggested their better efficacy against the breast cancer cell lines
in comparison to pure sulforaphane (Danafar et al., 2017b). The
nanoemulsion of Zataria essential oil with citrus-pectin was
formulated and assessed for its anticancer potential. The resulting
nanoemulsion enhanced the viability suppression of drug resistant
breast cancer cell lines, MCF-7 and MDA-MB-231 as well as
spheroids making it a viable and promising anti-proliferative
candidate against breast cancer (Salehi et al., 2020a; Salehi et al.,
2020b).

The phytosterol, Stigmasterol (STS)-loaded CD44 receptor targeted
PEGylated nanohybrid phytoliposomes were prepared for synergistic
chemotherapy along with doxorubicin (DOX) against the metastasis
and proliferation of breast cancer cells. The nanocarriers were fabricated
by thin-film hydrationmethod and were tested both in vivo and in vitro
against the breast cancer cell lines expressing various CD44 receptor
levels. The PEGylated DOX-STS liposomes modified using hyaluronic
acid (HA) were found to be promising carrier system towards CD44-
overexpressing tumors (Gautam et al., 2020). In one such study,
Thymoquinone (TQ)-loaded HA-conjugated Pluronic®-P123 and
-F127 copolymeric NPs were prepared as drug loading vehicles for
the delivery of anticancer phytochemical, TQ to TNBC cells. The TNBC
is known to be the most non-responsive subtypes of all breast cancers
towards the available therapeutic options (Bhattacharya et al., 2020).

On similar grounds, herbal anticancer phytochemicals can also be
incorporated into novel nanocarrier systems such as a polymerosome
system to achieve controlled release of natural anticancer agents with
improved drug loading efficiency and controlled release from the
nanocarriers (Nosrati et al., 2019). It was reported that the plant
polyphenols or flavonoids exhibited properties that are important for
the therapy of breast cancer. This can be attributed to their antioxidant
and anticarcinogenic potential that assists in cell cycle arrest as well as
suppression of the uncontrolled cell division in cancer cells, and the
activity can further be enhanced by incorporating them into
nanocarriers (Sindhu et al., 2021). The essential oils obtained from
plants are also a big source of phytochemicals with myriad biological
activities including anticancer. However, their use is still beset because
of low bioavailability, and rapid degradation profile which can be
improved using nanocarriers.

5 Nanomaterials targeting triple
negative breast cancer (TNBC)

The term “triple negative breast cancer” (TNBC) refers to a form
of breast cancer in which none of the breast cancer’s expression
receptors—human epidermal growth factor receptor (EGFR),

progesterone receptor (PR), and estrogen receptor (ER) are
present. As per the gene expression profile analysis, TNBC is
classified as the subtype of basal-like breast cancer (BLBC). The
TNBC constitutes about 15%–25% of all breast cancers and has a
more aggressive biology, including early stage metastatic disease,
visceral organ metastases, highly progressing disease, extremely
limited responses to existing treatment regimens, and overall
shorter survival rate compared with other major breast cancer
subtypes and the mortality rate is 40% within the first 5 years
post diagnosis (Yin et al., 2020). In TNBC patients, the relapse
period remains between 19 and 40 months, as compared to 35 and
67 months in case of non-TNBC patients. Approximately 75% of
TNBC patients die within 3 months of the recurrence (Lyons, 2019).
Also, it was reported that the risk of TNBC increased as the use of
oral contraceptives increased in duration (Howard and Olopade,
2021).

In comparison to other cancer types, TNBC has limited
treatment options. Therefore, chemotherapy has become the
main approach of TNBC using the drugs Cisplatin, Docetaxel,
Doxorubicin, Adriamycin, Taxan, Anthracycline, 5-Flurouracil
and EGFR inhibitors. FDA has recently approved new drugs
acting as PARP inhibitors which can destroy TNBC cancer cells
(Barchiesi et al., 2021). Although, these chemotherapies are
effective but are associated with critical biopharmaceutical
issues. Therefore, to overcome these issues, use of nanocarriers
was found to be a better alternative for delivering the
chemotherapeutic drugs. In addition to serving as a delivery
system, nanocarriers were found to be a highly successful
therapeutic approach for TNBC (Nahvi et al., 2022). The
circulation of drugs in blood is increased by nanoparticles,
which also decreases the phagocytosis and reticuloendothelial
system (RES) absorption. Moreover, it reduces the side effects
associated with chemotherapy. Drug repurposing is currently in
vogue along with chemotherapy for the treatment of TNBC.
Repurposed drug include evofosfamide, azadiradione,
niclosamide, diindolylmethane derivatives, ginsenosides,
triptorelin, etc (Ávalos-Moreno et al., 2020). These repurposed
medications are currently being administered for the TNBC
treatment using a variety of nanocarrier systems. Different
types of nanocarriers which showed effectiveness in TNBC
include liposomes, lipid nanocarriers, micelle, dendrimers,
carbon nanotubes, polymeric nanoparticles and gold
nanoparticles. Divergent methods are utilized for the
preparation of these nanocarriers which include solvent
dispersion method, film hydration method, high speed
homogenization, dissolution method, emulsification-solvent
evaporation, high-pressure homogenizer, gel electrophoresis,
chemical vapor deposition, self -assembled polymersomes and
adhesion method (Krishnamoorthy and Mahalingam, 2015).
Various nanocarriers used for the delivery of anticancer drugs
used in chemotherapy targeting TNBC are presented in Table 3.

6 Challenges associated with
nanomaterials

There are several challenges in nanoparticulate developments
that need to be addressed before these materials can be widely used
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in medicine. One of the main challenges is the potential toxicity of
nanomaterials. Due to their tiny size, nanoparticles can enter cells
and tissues, potentially causing harm. It is crucial to thoroughly
assess the toxicity associated with nanoparticles and understand
their effects on biological systems before they can be introduced to
clinical settings. Another challenge is the complexity of nanoparticle
manufacturing. The production of nanoparticles can be a
complicated and expensive process, requiring specialized
equipment and expertise.

The reproducibility and scalability of nanoparticle
manufacturing also need to be addressed to ensure that they can
be prepared at a larger scale for widespread use. The shelf-life and
stability of nanoparticles can also be a challenge. Nanoparticles can
be prone to aggregation, which can affect their properties and
efficacy. Additionally, the long-term stability of nanoparticles
needs to be evaluated to ensure that they maintain their
properties over time. Finally, there are regulatory challenges
associated with the use of nanomaterials in medicine. The
regulatory landscape for nanoparticles is still evolving, and there
are currently no specific guidelines for their use in clinical
applications. This can create uncertainty for researchers and
companies developing nanoparticulate therapies and may slow
down their development and approval processes.

7 Advantages of nanomaterials over
traditional therapies

The use of nanomaterials emerged as a potential approach in the
field of drug delivery owing to their unique chemical, physical and
biological properties. They offer several advantages over traditional
therapies based on pharmacokinetics (PK), pharmacodynamics
(PD), and therapeutic benefits as shown in Table 4.

8 PHOTOIMMUNONANOTHERAPY
(PINT)

PhotoImmunoNanoTherapy (PINT) is a type of cancer
treatment that combines three different approaches:
phototherapy, immunotherapy, and nanotechnology. It involves
the use of nanoparticles that are designed to target cancer cells
and then activate them with light to destroy them. The nanoparticles
are usually coated with antibodies that specifically bind to cancer
cells, making them a highly targeted approach to treat cancer. Once
the nanoparticles have been taken up by the cancer cells, light is used
to activate them, causing the nanoparticles to release reactive oxygen
species (ROS) that kill the cancer cells. In addition to the direct

TABLE 3 Types of drugs and nanocarriers utilized in the treatment of TNBC.

Drug Nanocarrier Method of preparation Study outcome Ref

Evofosfamide Chitosan oligosaccharide decorated
liposomes

Solvent dispersion method CO-HPPH-TH302/Liposome has
extremely effective therapeutic strategy
for CD44-overexpressing TNBC

Ding et al. (2021)

Azadiradione Liposomes Film hydration method Drug blood circulation is increased by
nanoparticles, which also decrease RES
phagocytosis and uptake

El-Senduny et al.
(2021)

Cisplatin Lipid nanocarriers Thin-film hydration method, high
speed homogenization

Caspase-9 and p21 expression are both
increased, and EGFR is inhibited

Andey et al. (2015)

Docetaxel PEGylated lipid-core micelle Dissolution method Improved the antitumor effects and
reduced the side-effects of docetaxel

Chen et al. (2021)

Niclosamide Phenyl boronic acid-modified solid
lipid nanoparticles

Emulsification-solvent evaporation effective strategy to eradicate TNBC
cells

SS Pindiprolu et al.
(2020)

Niclosamide Solid lipid nanoparticles Emulsification-solvent evaporation SLNs loaded niclosamide improved the
anticancer efficacy against TNBC

Pindiprolu et al.
(2019)

Diindolylmethane
derivatives

Nano structured lipid carrier High-pressure homogenizer NLC of diindolylmethane derivatives
was found to be effective in TNBC

Godugu et al. (2016)

Citral Nano structured lipid carrier High-pressure homogenization Citral was identified to target TNBC
with NLC as a feasible and efficient
delivery system

Nordin et al. (2020)

siRNA Dendrimers Gel electrophoresis Potential siRNA delivery vehicles using
polyamidoamine dendrimers to treat
TNBC

Jain et al. (2019)

Ginsenosides Carbon nanotubes Chemical vapor deposition Carbon nnaotubes was found to be
potential therapeutic strategy for
immunotherapy of TNBC

Luo et al. (2021)

Doxorubicin Polymeric nanoparticles Self -assembled hypoxia-responsive
polymersomes

Potential drug carriers for the treatment
of TNBC.

Mamnoon et al.
(2020)

Triptorelin Gold nanoparticles Adhesion method Triptorelin-functionalized PEG-coated
gold nanoparticles have therapeutic
efficacy to treat TNBC cells

Uzonwanne et al.
(2022)
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effects of the phototherapy, PINT also harnesses the power of the
immune system to fight cancer. The ROS generated by the
nanoparticles can also trigger an immune response that targets
the cancer cells, further enhancing the effectiveness of the
treatment. PINT is still in the early stages of development, but it
has shown promising potential in preclinical studies and holds great
potential as a new cancer therapy.

PINT offers several advantages in the treatment of breast cancer.
It can be highly targeted, meaning that the nanoparticles can be
designed to specifically bind to breast cancer cells only and spare the
healthy cells. Secondly, PINT can be combined with other treatment
approaches including chemotherapy or radiation therapy, to enhance
their effectiveness. Third, PINT can activate the immune system to
fight the cancer cells, providing a systemic response that can help
prevent the cancer from spreading. Several preclinical studies have
shown promising results for PINT in breast cancer. For example, in
one study, researchers used PINT to target breast cancer cells in mice
and found that the treatment was highly effective at reducing the size
of tumors and preventing metastasis. Another study showed that
PINT combined with immunotherapy was able to eliminate breast
cancer cells in mice without causing any significant side effects.

9 Selection criteria for a
nanoparticulate-based therapy

Nanoparticulate-based therapy is an upcoming field of
medicine that involves the use of tiny particles for the

targeted delivery of drugs or therapeutic agents to specific
cells or tissues in the body. The selection of appropriate
nanoparticles for therapy is crucial for the success of the
treatment. The selection criteria for nanoparticulate-based
therapy involve numerous factors such as size, surface
charge, composition, and biocompatibility of the
nanoparticles. The size of the nanoparticles is an important
consideration because it determines their ability to penetrate
biological barriers and reach the targeted cells or tissues. The
ideal size for nanoparticles used in therapy is typically between
10 and 200 nm. Additionally, the surface charge of
nanoparticles can also influence their ability to target specific
cells or tissues. Particles with a neutral or slightly negative
surface charge tend to be more stable and have longer
circulation times in the bloodstream, which is critical for the
delivery of drugs to target cells. The composition of
nanoparticles also plays a crucial role in determining their
suitability for therapy. For example, nanoparticles made of
biodegradable or biocompatible materials such as lipids,
proteins, or polysaccharides tend to have fewer adverse
effects and can be easily metabolized and eliminated from
the body.

Moreover, nanoparticles can be functionalized with specific
ligands or targeting molecules that enable them to specifically
bind to the target cells or tissues, improving their specificity and
efficacy. Finally, the biocompatibility of nanoparticles is also
essential for successful therapy. Nanoparticles should not trigger
an immune response or cause toxicity or inflammation in the body.

TABLE 4 Advantages of nanomaterials over traditional therapy on the basis of PK, PD and therapeutic benefits.

Criteria Nanomaterials Traditional therapy

PK Advantages Enhanced bioavailability and extended circulation time due to smaller size and
surface area

Limited bioavailability and short circulation time

Increased stability and solubility, and improved tissue penetration and
accumulation

Limited stability and solubility, and poor tissue penetration and
accumulation

Limited capacity for drug encapsulation and combination, and lack of
versatility for multifunctional therapeutics

Limited accumulation in tumor tissues and potential for off-target effects

Ability to cross biological barriers such as the placenta, and potential for oral
delivery

Limited ability to cross biological barriers such as the placenta, and poor
bioavailability with oral delivery

PD Advantages Increased specificity and targeted delivery to diseased cells/tissues due to
surface modification and functionalization

Non-specific and systemic distribution

Controlled release and sustained drug delivery, and ability to overcome
biological barriers including the blood-brain barrier

Immediate release and rapid drug clearance, and difficulty in crossing the
biological barriers

Ability to target specific tumor markers and overcome multidrug resistance
mechanisms, and potential for synergistic drug combinations

Non-specific and systemic distribution and potential for multidrug
resistance and toxicity

Reduced immunogenicity and potential for immunomodulatory effects, and
ability to target immune cells

Increased immunogenicity and potential for adverse immune reactions, and
limited ability to target immune cells

Therapeutic
Benefits

Lower effective doses, reduced toxicity, and improved patient compliance Higher effective doses, increased toxicity, and poor patient compliance

Ability to encapsulate multiple drugs and synergistic drug combinations, and
potential for multifunctional therapeutics

Limited capacity for drug encapsulation and combination, and lack of
versatility for multifunctional therapeutics

Potential for reducing tumor size and preventing metastasis, and ability to
deliver both chemotherapy and targeted therapies

Limited efficacy in reducing tumor size and preventing metastasis, and
potential for severe side effects and treatment resistance

Potential for personalized medicine and tailoring therapies to individual
patients’ needs, and ability to treat diseases at early stages

Limited ability to personalize therapies and treat diseases at early stages, and
reliance on palliative care for certain diseases
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Hence, it is critical to carefully assess the toxicity and
biocompatibility of nanoparticles in preclinical studies before
using them in clinical trials. Overall, the selection of appropriate

nanoparticles for therapy involves a careful balance between the size,
surface charge, composition, and biocompatibility of the
nanoparticles to ensure their safety and efficacy for therapeutic use.

TABLE 5 Recent patents granted on nanotechnology-based treatment of breast cancer.

Application/
Publication number

Title of invention Summary of invention Ref

AU2022200881A1 Mesoporous Silica Nanoparticules with Lipid Bilayer
Coating for Cargo Delivery

This invention provided a nanocarrier consisting of a silica
body with pores, coated with a lipid bilayer containing a
cargo-trapping agent and pores are sealed by the phospholipid
bilayer

Liu et al. (2022)

JP2022058656A A Micrococcus genus bacteria origin nano vesicle and
its use

The current invention provided an improved composition for
cancer management

Kim (2022)

CN114259477A A nano delivery system for promoting penetration,
relieving tumour hypoxia, and targeting tumour cell and
preparation method and application thereof

The present invention provided unique and intelligent
nanodelivery system for targeted drug delivery with enhanced
penetration and reduced toxicity

Shen et al.
(1142)

WO/2021/046480 Nucleic acid-mediated delivery of therapeutics This invention involved the compositions of therapeutic
compounds complexed with nucleic acid fragments to form
nanoparticles, along with associated small molecules, and
their use

Kwon et al.
(2021)

WO/2021/011501 Therapeutic Constructs for co-delivery of mitotic kinase
inhibitor and immune checkpoint inhibitor

The disclosure describes therapeutic constructs consisting of a
delivery particle, immune checkpoint inhibitor, mitotic kinase
inhibitor, and chemical linker. These constructs can treat
different cancer types, improve drug delivery, and induce
cancer cell death via therapeutic and immune effects

Yantasee et al.
(2021)

US20220117894A1 Targeted Polymerized Nanoparticles for Cancer Treatment The invention relates to a novel drug delivery system
comprising hybrid liposomal nanoparticles with
polymerizable and non-polymerizable lipids, used to deliver
therapeutic agents and target specific diseases

Nagy et al.
(2022)

AU2021290200A1 Biomarkers For Nanoparticle Compositions This invention provided nanoparticles containing an mTOR
inhibitor and albumin for the treatment of diseases such as
cancer, restenosis, and pulmonary hypertension based on the
presence or absence of an mTOR-activating aberration

Desai (2021)

AU2021269331A1 A pharmaceutical composition comprising stable,
amorphous hybrid nanoparticles of atleast one protein
kinase inhibitor and atleast one polymeric stabilizing and
matrix-forming component

This invention was related to protein kinase inhibitor- and
matrix-forming polymeric hybrid nanoparticles that were
stable and amorphous and could be used in pharmaceutical
compositions to treat diseases

Brisander et al.
(2021)

CN114306628A A two-dimensional black phosphorus hybrid nano-drug
targeting HER2 positive breast cancer modified based on
PEG-MAL

This invention involved hybrid nanoparticles using PEG-
MAL-modified 2D black phosphorus for targeted
photothermal immune composite therapy of HER2-positive
breast cancer with higher drug loading and photothermal
conversion rates

Benqing and
Jinxing (1143)

CN114272209A A nano-lipid microsphere of chemical anti-tumour
medicine, and combined application of the nano-lipid
microsphere and tumour immunization therapy medicine

A novel approach to treat cancer wass provided by this
invention, which utilized the nano-lipid microspheres
containing anticancer drugs combined with tumor
immunotherapeutic drugs such as anti-PD-1 monoclonal
antibody (alpha PD-1) in three different treatment schemes
based on the in vivo effects. These combinations selectively
released the anticancer drugs at the tumor site

Qingpo et al.
(1142)

CN114191549A Docetaxel-curcumin solid lipid nano-particle targeted by
intestinal SGLT1 and preparation method and application
thereof

The invention based on the targeted docetaxel-curcumin solid
lipid nanoparticle that combines chemotherapy and
photodynamic therapy to effectively treat tumors, with a
preparation method and application provided to solve issues
of adverse reactions and low bioavailability of the drugs

Gang et al.
(1141)

CN114099656A A co-loaded nano preparation based on antigen and active
polysaccharide and preparation method and application
thereof

The invention discloses a co-loading of antigen and active
polysaccharide in nanocarrier that showed more effective and
desired tumor immunotherapy effect

Conghui (1140)

CN114010786A A method for treating triple-negative breast cancer by
double antisense nucleic acid synergetic photodynamic
therapy

Using double antisense oligonucleotide synergistic
photodynamic therapy, the inventors created a nanodelivery
system for the treatment of TNBC that successfully induced
apoptosis in tumor cells

Zhaoqi et al.
(1140)
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TABLE 6 List of the drugs approved by USFDA from 2020–2022 for advanced or metastatic breast cancer.

Drug molecule Brand name/Manufacturer Approval date Remarks Ref

Fam-trastuzumab deruxtecan-
nxki

Enhertu/Daiichi Sankyo, Inc 05 August 2022 Adult patients with HER2-low (IHC 1+ or IHC 2+/ISH) metastatic or unresectable breast cancer who previously had chemotherapy in a
metastatic context or who have experienced a disease recurrence while receiving adjuvant chemotherapy or within 6 months of
finishing it

(fda.gova)

Olaparib Lynparza/AstraZeneca
Pharmaceuticals, LP

11 March 2022 Adults with deleterious or suspected detrimental germline-BRCA mutations (gBRCAm) who received neoadjuvant or adjuvant
chemotherapy for high risk early breast cancer

(fda.govb)

Abemaciclib Verzenio/Eli Lilly and Co. 12 October 2021 For the adjuvant treatment of adults with HR-positive, HER2-negative, node-positive, early breast cancer with a high risk of recurrence
and a 20% Ki-67 score, as determined by an FDA-approved test, a combination of abemaciclib and endocrine therapy (tamoxifen or an
aromatase inhibitor) was advised. This was the first CDK-4/6 inhibitor approved for adjuvant treatment of breast cancer

(fda.govc)

Pembrolizumab Keytruda/Merck 26 July 2021 The FDA has approved pembrolizumab as a single agent adjuvant treatment following surgery and as a neoadjuvant treatment for high-
risk, early-stage TNBC in combination with chemotherapy

(fda.govd)

Sacituzumab govitecan Trodelvy/Immunomedics Inc 7 April 2021 Sacituzumab govitecan received FDA approval for patients having unresectable locally advanced or metastatic-TNBC (mTNBC) who
had received two or more previous systemic therapies, including at least one for metastatic cancer

(fda.gove)

Margetuximab-cmkb Margenza/MacroGenics 16 December 2020 For the treatment of metastatic HER2-positive breast cancer in people who had received two or more prior anti-HER2 regimens, at least
one of which was for metastatic cancer, the FDA approved margetuximab-cmkb (MARGENZA, MacroGenics) in combination with
chemotherapy

(fda.govf)

Ppembrolizumab Keytruda/Merck & Co. 13 November 2020 The FDA had approved the use of pembrolizumab in combination with chemotherapy to treat patients with locally recurrent, incurable,
or metastatic-TNBC, whose tumors expressed PD-L1 (CPS 10), as determined by an FDA-approved test

(fda.govg)
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10 Recent patents on nanomaterials for
anticancer therapy

To comprehend the ongoing research into the breast cancer
treatment using nanocarriers and nanotechnology, an effective
search was conducted using the databases ‘Patentscope’,
‘Espacenet’, ‘USPTO public pair’, ‘Google patents’ and ‘InPASS’,
to identify the relevant patents in this domain, which yielded a total
of 3,239 results. To attain an accurate sequence of ongoing research
work, the results obtained were further restricted to recently granted
patents in the year 2021 and 2022. Consequently, some of the
relevant inventions were studied, and the most pertinent results
were included in the current review to facilitate comprehension of
the research work. These studies should provide a conceptual
framework for conducting more programmed and effective breast
cancer research and implementing nanotechnology-based strategies.
Table 5 provided below summarizes some of the selected inventions.

11 Clinical studies on anticancer
nanomaterials

Chemotherapy, surgery, hormone therapy, radiation, and
targeted therapy are the cornerstones of breast cancer treatment.
However, scientists continue to investigate new treatments and
medications, as well as novel combinations of existing treatments.
Participants in clinical trials have the opportunity to receive a new,
potentially superior treatment and to contribute to cancer research
that may improve the breast cancer treatment for others. However,
there is a new emphasis on adding targeted therapies to hormone
therapy for HR-positive cancers that are advanced or metastatic.
These treatments could delay the need for chemotherapy and ideally,
increase survival. The United States Food and Drug Administration
(USFDA) approved the use of palbociclib, ribociclib, and everolimus
in conjunction with hormone therapy to treat advanced or
metastatic breast cancer. It has been demonstrated that ribociclib
prolongs the lives of patients with metastatic breast cancer.
Abemaciclib can be used with or after hormone therapy to treat
HR-positive, HER2-negative advanced or metastatic breast cancer.
table 6 showed list of drugs approved by the USFDA from
2020 to 2022.

12. Conclusions and future Directions

As the molecular biology and etiology of breast cancer is
understood well, significant progress have been achieved in the
recent years in the diagnosis and treatment of this disease. Various
molecular targets have been identified and several drugs are developed
showing good potential in managing the disease. The limitations of
currently used drugs have also been successfully overcome by
developing the nanomedicines using the nanotechnology.
Incorporating the drugs and their combinations in nanocarriers
has shown better potential as far as the biopharmaceutical issues
of the drugs are concerned. Nanoparticles have emerged as versatile
drug carrier systems which allow delivery of multiple anticancer
agents with the ability to target more than one type of cancer
leading to advancements in both diagnosis and treatment of

cancer. However, adopting these advanced strategies should be
exercised with caution owing to the complexity of the
nanoformulations which might lead to immunogenicity and
toxicity. Also, the higher production cost of nanomedicines and
limited upscalability are crucial factors with the manufacturing of
nanomedicines which need to be addressed. Nanocarriers are also
associated with some drawbacks including the possible
immunogenicity, toxicity and fast excretion. The solid-lipid
nanoparticles (SLNs) have low drug loading capacities and contain
other complex colloidal structures. The cationic lipids present in
liposomes can cause toxicity and also suffer from rapid degradation in
body. Till date, only few nanomedicines have received the approval
from USFDA out of which Doxil and Abraxane are the two most
successful ones for the breast cancer treatment in clinical settings.
Several other promising nanocarriers-assisted targeted delivery of
synthetic and natural molecules are being investigated in recent
years and a number of other formulations are in clinical trial stage.
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