674 research outputs found

    Spin separation in digital ferromagnetic heterostructures

    Get PDF
    In a study of the ferromagnetic phase of a multilayer digital ferromagnetic semiconductor in the mean-field and effective-mass approximations, we find the exchange interaction to have the dominant energy scale of the problem, effectively controlling the spatial distribution of the carrier spins in the digital ferromagnetic heterostructures. In the ferromagnetic phase, the majority and minority carriers tend to be in different regions of the space (spin separation). Hence, the charge distribution of carriers also changes noticeably from the ferromagnetic to the paramagnetic phase. An example of a design to exploit these phenomena is given.Comment: 4 pages, 3 figures. Submitted to Phys. Rev.

    Optimized Effective Potential for Extended Hubbard Model

    Full text link
    Antiferromagnetic and charge ordered Hartree-Fock solutions of the one-band Hubbard model with on-site and nearest-neighbor Coulomb repulsions are exactly mapped onto an auxiliary local Kohn-Sham (KS) problem within a density-functional theory. The mapping provides a new insight into the interpretation of the KS equations. (i) With an appropriate choice of the basic variable, there is a universal form of the KS potential, which is applicable both for the antiferromagnetic and the charge ordered solutions. (ii) The Kohn-Sham and Hartree-Fock eigenvalues are interconnected by a scaling transformation. (iii) The band-gap problem is attributed to the derivative discontinuity of the basic variable as the function of the electron number, rather than a finite discontinuity of the KS potential. (iv) It is argued that the conductivity gap and the energies of spin-wave excitations can be entirely defined by the parameters of the ground state and the KS eigenvalues.Comment: 21 page, 3 figure

    CaB_6: a new semiconducting material for spin electronics

    Full text link
    Ferromagnetism was recently observed at unexpectedly high temperatures in La-doped CaB_6. The starting point of all theoretical proposals to explain this observation is a semimetallic electronic structure calculated for CaB_6 within the local density approximation. Here we report the results of parameter-free quasiparticle calculations of the single-particle excitation spectrum which show that CaB_6 is not a semimetal but a semiconductor with a band gap of 0.8 eV. Magnetism in La_xCa_{1-x}B_6 occurs just on the metallic side of a Mott transition in the La-induced impurity band.Comment: 4 pages, 1 postscript figur

    Spin relaxation in low-dimensional systems

    Full text link
    We review some of the newest findings on the spin dynamics of carriers and excitons in GaAs/GaAlAs quantum wells. In intrinsic wells, where the optical properties are dominated by excitonic effects, we show that exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors. In doped wells, the two spin components of an optically created two-dimensional electron gas are well described by Fermi-Dirac distributions with a common temperature but different chemical potentials. The rate of the spin depolarization of the electron gas is found to be independent of the mean electron kinetic energy but accelerated by thermal spreading of the carriers.Comment: 1 PDF file, 13 eps figures, Proceedings of the 1998 International Workshop on Nanophysics and Electronics (NPE-98)- Lecce (Italy

    Coulombian Disorder in Periodic Systems

    Full text link
    We study the effect of unscreened charged impurities on periodic systems. We show that the long wavelength component of the disorder becomes long ranged and dominates static correlation functions. On the other hand, because of the statistical tilt symmetry, dynamical properties such as pinning remain unaffected. As a concrete example, we focus on the effect of Coulombian disorder generated by charged impurities, on 3D charge density waves with non local elasticity. We calculate the x-ray intensity and find that it is identical to the one produced by thermal fluctuations in a disorder-free smectic-A. We discuss the consequences of these results for experiments.Comment: 11 pages, 3 figures, revtex

    Spin relaxation of conduction electrons in bulk III-V semiconductors

    Full text link
    Spin relaxation time of conduction electrons through the Elliot-Yafet, D'yakonov-Perel and Bir-Aronov-Pikus mechanisms is calculated theoretically for bulk GaAs, GaSb, InAs and InSb of both nn- and pp-type. Relative importance of each spin relaxation mechanism is compared and the diagrams showing the dominant mechanism are constructed as a function of temperature and impurity concentrations. Our approach is based upon theoretical calculation of the momentum relaxation rate and allows understanding of the interplay between various factors affecting the spin relaxation over a broad range of temperature and impurity concentration.Comment: an error in earlier version correcte

    Theoretical Study of Cubic Structures Based on Fullerene Carbon Clusters: C28_{28}C and (C28)2_{28})_{2}

    Full text link
    We study a new hypothetical form of solid carbon \csc, with a unit cell which is composed of the \cs \ fullerene cluster and an additional single carbon atom arranged in the zincblende structure. Using {\it ab initio} calculations, we show that this new form of solid carbon has lower energy than hyperdiamond, the recently proposed form composed of \cs \ units in the diamond structure. To understand the bonding character of of these cluster-based solids, we analyze the electronic structure of \csc \ and of hyperdiamond and compare them to the electronic states of crystalline cubic diamond.Comment: 15 pages, latex, no figure

    Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures

    Full text link
    This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {\pi} states and the gap between {\pi} and {\pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure

    Sustained elevation of Epstein–Barr virus antibody levels preceding clinical onset of nasopharyngeal carcinoma

    Get PDF
    We have monitored Epstein–Barr virus (EBV) IgA antibody levels of 39 nasopharyngeal carcinoma (NPC) cases for up to 15 years before clinical onset of NPC, and assessed preclinical serologic status of another 68 cases. Our results identify a serologic window preceding diagnosis when antibody levels are raised and sustained. This window can persist for as long as 10 years, with a mean duration estimated to as 37±28 months. Ninety-seven of these 107 NPC cases exhibited such a window. Cases that did not may reflect individual antibody response to EBV. Serologic screening at enrollment identified those cases who had already entered the window and became clinically manifested earlier (median=28 months) than those who entered the window after enrollment (median=90 months). The former account for 19 of 21 cases diagnosed within 2 years of screening. Nasopharyngeal carcinoma risk levels among seropositive subjects were also highest during this period. Both prediction rates and risk levels declined thereafter; cases detected at later times were composed of increasing proportions of individuals who entered the serological window after screening. Our findings establish EBV antibody as an early marker of NPC and suggest that repeated screening to monitor cases as they enter this window has considerable predictive value, with practical consequences for cancer treatment

    Exact Kohn-Sham exchange kernel for insulators and its long-wavelength behavior

    Full text link
    We present an exact expression for the frequency-dependent Kohn-Sham exact-exchange (EXX) kernel for periodic insulators, which can be employed for the calculation of electronic response properties within time-dependent (TD) density-functional theory. It is shown that the EXX kernel has a long-wavelength divergence behavior of the exact full exchange-correlation kernel and thus rectifies one serious shortcoming of the adiabatic local-density approximation and generalized-gradient approximations kernels. A comparison between the TDEXX and the GW-approximation-Bethe-Salpeter-equation approach is also made.Comment: two column format 6 pages + 1 figure, to be publisehd in Physical Review
    corecore