199 research outputs found

    Laparoscopic Hernia Repair in Infancy and Childhood; Evaluation of Two Different Techniques

    Get PDF
    Background/Purpose: There are many techniques available for laparoscopic hernia repair in infancy and childhood. The objective of this study is to compare two different laparoscopic techniques as regards operative time, recurrence rate, hydrocele formation and post operative cosmetic results. Materials & Methods: A prospective randomized controlled study was carried out in the Pediatric Surgery Unit of Al- Azhar University Hospitals, over three years period. ne-hundred and fifty patients with congenital inguinal hernia were randomized into two equals groups; (n = 75). Group A was subjected to purse-string suture around the internal inguinal ring (IIR) using two needle holders (TNH). Group B was subjected to laparoscopic hernia repair of inguinal hernia by Reverdin Needle (RN). Inclusion criteria included; bilateral inguinal hernia, recurrent hernia, hernia in obese child, incarcerated hernia and hernia on ipsilateral with questionable contralateral side. Exclusion criteria included; unilateral inguinal hernia, and hernia with undescended testicles. The main outcome measurements were; operative time, hospital stay, postoperative hydrocele formation, recurrence rate, and cosmetic results. Results: There were no significant differences as regard age, sex and mode of presentation between both groups. All cases were completed successfully without conversion. There were significant statistical differences in the operative time between the studied groups, while there were no significant statistical differences in the hospital stay, post operative hydrocele formation and recurrence rate. The cosmetic result is excellent in group B. Conclusion: Laparoscopic hernia repair by RN is an effective line of hernia repair in infancy and childhood. It resulted in marked reduction of operative time and excellent cosmetic results with low recurrence. Index Word: Laparoscopic, Reverdin Needle, Purse-string, Intracorporeal sutures

    Expression of chimeric HCV peptide in transgenic tobacco plants infected with recombinant alfalfa mosaic virus for development of a plant-derived vaccine against HCV

    Get PDF
    Hepatitis C virus (HCV) is the major etiologic agent of blood transfusion–associated and sporadic non-A non-B hepatitis affecting more than 180 million worldwide. Vaccine development for HCV has been difficult and there is no vaccine or effective therapy against this virus. In this paper, we describe the development of an experimental plant-derived subunit vaccine against HCV. Our subunit vaccine originates from a consensus HCV-HVR1 epitope (R9) that antigenically mimics many natural HVR1 variants. This HVR1 sequence was cloned into the open reading frame of a plant virus, Alfalfa Mosaic Virus (ALMV) coat protein (CP). The chimeric ALMV RNA4 containing sequence-encoding R9 epitope was introduced into full-length infectious ALMV-RNA3 that was utilized as an expression vector. The recombinant chimeric protein is expressed in transgenic tobacco plants (P12) expressing ALMV RNA1 and 2. Plant–derived HVR1/ALMV-CP reacted with HVR1 and/or ALMV-CP specific monoclonal antibodies and immune sera from individuals infected with HCV. Using plant-virus based transient expression to produce this unique chimeric antigen will facilitate the development and production of an experimental HCV vaccine. A plant derived recombinant HCV vaccine can potentially reduce expenses normally associated with production and delivery of conventional vaccine. Key Words: Hepatitis C virus (HCV), transgenic tobacco plants (P12), consensus HCV HVR1 epitope (R9), and chimeric ALMV-RNA4. African Journal of Biotechnology Vol.3(11) 2004: 588-59

    In vivo effects of interferon-Γ and anti-interferon-Γ antibody on the experimentally induced lichenoid tissue reaction

    Full text link
    We investigated the in vivo effect of recombinant interferon-Γ (IFN-Γ) and tumour necrosis factor Α (TNF-Α) treatment of mice on the development of the delayed-type hypersensitivity (DTH) reaction and lichenoid tissue reaction (LTR) following the local injection of cloned autoreactive T cells. Both the DTH reaction and the LTR were significantly enhanced by pre-treatment with IFN-Γ, but not with TNF-Ã. Induction of class II MHC antigens on keratinocytes was not essential for the enhancement by IFN-Γ. Administration of anti-IFN-Γ antibody reduced the DTH reaction and LTR, although complete inhibition was not observed with our treatment regimen. The ability of IFN-Γ to increase the number of the cloned T cells invading the epidermis in vivo , is in keeping with our previous observation that IFN-Γ treatment of cultured keratinocytes markedly increased the adherence reaction between T cells and keratinocytes in vitro.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74579/1/j.1365-2133.1988.tb03202.x.pd

    Effects of oestradiol and tamoxifen on VEGF, soluble VEGFR-1, and VEGFR-2 in breast cancer and endothelial cells

    Get PDF
    Angiogenesis is regulated by the balance between pro- and antiangiogenic factors. Vascular endothelial growth factor (VEGF), acting via the receptors VEGFR-1 and VEGFR-2, is a key mediator of tumour angiogenesis. The soluble form of the VEGF receptor-1 (sVEGFR-1) is an important negative regulator of VEGF-mediated angiogenesis. The majority of breast cancers are oestrogen dependent, but it is not fully understood how oestrogen and the antioestrogen, tamoxifen, affect the balance of angiogenic factors. Angiogenesis is a result of the interplay between cancer and endothelial cells, and sex steroids may exert effects on both cell types. In this study we show that oestradiol decreased secreted sVEGFR-1, increased secreted VEGF, and decreased the ratio of sVEGFR-1/VEGF in MCF-7 human breast cancer cells. The addition of tamoxifen opposed these effects. Moreover, human umbilical vein endothelial cells (HUVEC) incubated with supernatants from oestradiol-treated MCF-7 cells exhibited higher VEGFR-2 levels than controls. In vivo, MCF-7 tumours from oestradiol+tamoxifen-treated nude mice exhibited decreased tumour vasculature. Our results suggest that tamoxifen and oestradiol exert dual effects on the angiogenic environment in breast cancer by regulating cancer cell-secreted angiogenic ligands such as VEGF and sVEGFR-1 and by affecting VEGFR-2 expression of endothelial cells

    Allelopathic Effects of Water Hyacinth [Eichhornia crassipes]

    Get PDF
    Eichhornia crassipes (Mart) Solms is an invasive weed known to out-compete native plants and negatively affect microbes including phytoplankton. The spread and population density of E. crassipes will be favored by global warming. The aim here was to identify compounds that underlie the effects on microbes. The entire plant of E. crassipes was collected from El Zomor canal, River Nile (Egypt), washed clean, then air dried. Plant tissue was extracted three times with methanol and fractionated by thin layer chromatography (TLC). The crude methanolic extract and five fractions from TLC (A–E) were tested for antimicrobial (bacteria and fungal) and anti-algal activities (green microalgae and cyanobacteria) using paper disc diffusion bioassay. The crude extract as well as all five TLC fractions exhibited antibacterial activities against both the Gram positive bacteria; Bacillus subtilis and Streptococcus faecalis; and the Gram negative bacteria; Escherichia coli and Staphylococcus aureus. Growth of Aspergillus flavus and Aspergillus niger were not inhibited by either E. crassipes crude extract nor its five fractions. In contrast, Candida albicans (yeast) was inhibited by all. Some antialgal activity of the crude extract and its fractions was manifest against the green microalgae; Chlorella vulgaris and Dictyochloropsis splendida as well as the cyanobacteria; Spirulina platensis and Nostoc piscinale. High antialgal activity was only recorded against Chlorella vulgaris. Identifications of the active antimicrobial and antialgal compounds of the crude extract as well as the five TLC fractions were carried out using gas chromatography combined with mass spectroscopy. The analyses showed the presence of an alkaloid (fraction A) and four phthalate derivatives (Fractions B–E) that exhibited the antimicrobial and antialgal activities

    Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens.</p> <p>Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses.</p> <p>Methods</p> <p>To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains.</p> <p>Results</p> <p>Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection.</p> <p>Conclusions</p> <p>Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain.</p

    Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    Get PDF
    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo

    Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila melanogaster

    Get PDF
    Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. Methods and Findings: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genomewide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79 % and 56–66 % of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. Conclusions: We identified novel candidate genes associated with variation in resistance to oxidative stress that hav
    corecore