22 research outputs found

    Development of chewable tablet of <i>Trikatu churna</i> and standardization by densitometry

    Get PDF
    256-262Trikatu is a well known polyherbal powder form formulation in Ayurveda consisting of Piper longum L. fruit, Piper nigrum L. fruit and Zingiber officinale Rosc. rhizome in equal amounts, i.e., 1:1:1 ratio. It is prescribed for cold, fever, asthma, cough, respiratory problems and treatment of digestive disorders. The aim of the present study was to develop and validate a densitometric method for the identification and quantification of piperine and 6-gingerol in the crude drug Trikatu as the markers for quality of raw materials and to develop a well characterized formulation of Trikatu as a chewable tablet

    Evaluation of Ayush-64 (a Polyherbal Formulation) and Its Ingredients in the Syrian Hamster Model for SARS-CoV-2 Infection Reveals the Preventative Potential of <i>Alstonia scholaris</i>

    No full text
    In the current study, we evaluated the efficacy of Ayush-64 (A64), a polyherbal formulation containing Alstonia scholaris (L.) R. Br. (A. scholaris), Caesalpinia crista L. (C. crista), Picrorhiza kurroa Royle ex Benth (P. kurroa), and Swertia chirata (Roxb.) H. Karst. (S. chirata) against COVID-19 in a Syrian hamster infection model. Preventative use of A64 resulted in the late-phase recovery of body weight loss in severe acquired respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected hamsters, suppression of pro-inflammatory cytokines, and blunted pulmonary pathology. In addition, we also investigated the efficacy of individual ingredients of A64, viz., A. scholaris, C. crista, P. kurroa, and S. chirata, in the hamster model. The hamster challenge data showed robust anti-viral and immunomodulatory potential in A. scholaris, followed by P. kurroa. However, C. crista and S. chirata of A64 showed prominent immunomodulatory potential without limiting the lung viral load. In order to better understand the immunomodulatory potential of these herbal extracts, we used an in vitro assay of helper T cell differentiation and found that A. scholaris mediated a more profound suppression of Th1, Th2, and Th17 cell differentiation as compared to A64 and other ingredients. Taken together, our animal study data identifies the ameliorative potential of A64 in mitigating coronavirus disease-19 (COVID-19) pulmonary pathology. A. scholaris, a constituent extract of A64, showed relatively higher anti-viral and immunomodulatory potential against COVID-19. The present study warrants further investigations to identify the active pharmaceutical ingredients of A. scholaris for further studies

    Not Available

    No full text
    Not AvailableIn this study, genetic diversity and population structure of mango cultivars were assessed by employing fourteen simple sequence repeat markers, with high polymorphic information content. A set of 387 mango accessions from different regions of India was used. Model-based structure analysis revealed the presence of two subpopulations comprising the cultivars from ‘South-West’ region and ‘North-East’ region. A similar clustering pattern was observed in the dendrogram analysis, with two major groups identified that were further sub-grouped based on their genetic relatedness. Analysis of molecular variance showed a significant variance component among and within mango sub-populations derived from the structure analysis. The proportion of genetic differentiation among individuals within the two populations was found to be significant with a FST value of 0.248. The extent of genetic diversity was found to be higher in case of ‘South and West’ population than ‘North and East’ population. Six SSR loci with low probability of identity values have been chosen as universal markers for mango characterization. Our results highlight genetic diversity encompassed by mango cultivars and genetic distinctness of ‘South-West’ and ‘North-East’ region cultivars.Not Availabl

    Not Available

    No full text
    Not AvailableIn this study, genetic diversity and population structure of mango cultivars were assessed by employing fourteen simple sequence repeat markers, with high polymorphic information content. A set of 387 mango accessions from different regions of India was used. Model-based structure analysis revealed the presence of two subpopulations comprising the cultivars from ‘South-West’ region and ‘North-East’ region. A similar clustering pattern was observed in the dendrogram analysis, with two major groups identified that were further sub-grouped based on their genetic relatedness. Analysis of molecular variance showed a significant variance component among and within mango sub-populations derived from the structure analysis. The proportion of genetic differentiation among individuals within the two populations was found to be significant with a F ST value of 0.248. The extent of genetic diversity was found to be higher in case of ‘South and West’ population than ‘North and East’ population. Six SSR loci with low probability of identity values have been chosen as universal markers for mango characterization. Our results highlight genetic diversity encompassed by mango cultivars and genetic distinctness of ‘South-West’ and ‘North-East’ region cultivars.Not Availabl

    Fangchinoline inhibits SARS-CoV-2 and MERS-CoV entry

    No full text
    The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness. Moreover, novel emerging variants of SARS-CoV-2 pose a risk of new COVID-19 waves. Therefore, identification of effective antivirals is critical in controlling SARS and other coronaviruses, such as MERS-CoV. We show that Fangchinoline (Fcn), a bisbenzylisoquinoline alkaloid, inhibits replication of SARS-CoV, SARS-CoV-2, and MERS-CoV in a range of in vitro assays, by blocking entry. Therapeutic use of Fcn inhibited viral loads in the lungs, and suppressed associated airway inflammation in hACE2. Tg mice and Syrian hamster infected with SARS-CoV-2. Combination of Fcn with remdesivir (RDV) or an anti-leprosy drug, Clofazimine, exhibited synergistic antiviral activity. Compared to Fcn, its synthetic derivative, MK-04-003, more effectively inhibited SARS-CoV-2 and its variants B.1.617.2 and BA.5 in mice. Taken together these data demonstrate that Fcn is a pan beta coronavirus inhibitor, which possibly can be used to combat novel emerging coronavirus diseases.</p

    Fangchinoline inhibits SARS-CoV-2 and MERS-CoV entry

    No full text
    The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness. Moreover, novel emerging variants of SARS-CoV-2 pose a risk of new COVID-19 waves. Therefore, identification of effective antivirals is critical in controlling SARS and other coronaviruses, such as MERS-CoV. We show that Fangchinoline (Fcn), a bisbenzylisoquinoline alkaloid, inhibits replication of SARS-CoV, SARS-CoV-2, and MERS-CoV in a range of in vitro assays, by blocking entry. Therapeutic use of Fcn inhibited viral loads in the lungs, and suppressed associated airway inflammation in hACE2. Tg mice and Syrian hamster infected with SARS-CoV-2. Combination of Fcn with remdesivir (RDV) or an anti-leprosy drug, Clofazimine, exhibited synergistic antiviral activity. Compared to Fcn, its synthetic derivative, MK-04-003, more effectively inhibited SARS-CoV-2 and its variants B.1.617.2 and BA.5 in mice. Taken together these data demonstrate that Fcn is a pan beta coronavirus inhibitor, which possibly can be used to combat novel emerging coronavirus diseases.</p

    Proinflammatory Innate Cytokines and Distinct Metabolomic Signatures Shape the T Cell Response in Active COVID-19

    No full text
    The underlying factors contributing to the evolution of SARS-CoV-2-specific T cell responses during COVID-19 infection remain unidentified. To address this, we characterized innate and adaptive immune responses with metabolomic profiling longitudinally at three different time points (0&ndash;3, 7&ndash;9, and 14&ndash;16 days post-COVID-19 positivity) from young, mildly symptomatic, active COVID-19 patients infected during the first wave in mid-2020. We observed that anti-RBD IgG and viral neutralization are significantly reduced against the delta variant, compared to the ancestral strain. In contrast, compared to the ancestral strain, T cell responses remain preserved against the delta and omicron variants. We determined innate immune responses during the early stage of active infection, in response to TLR 3/7/8-mediated activation in PBMCs and serum metabolomic profiling. Correlation analysis indicated PBMCs-derived proinflammatory cytokines, IL-18, IL-1&beta;, and IL-23, and the abundance of plasma metabolites involved in arginine biosynthesis were predictive of a robust SARS-CoV-2-specific Th1 response at a later stage (two weeks after PCR positivity). These observations may contribute to designing effective vaccines and adjuvants that promote innate immune responses and metabolites to induce a long-lasting anti-SARS-CoV-2-specific T cell response

    <i>Pichia pastoris</i>-Expressed Dengue 2 Envelope Forms Virus-Like Particles without Pre-Membrane Protein and Induces High Titer Neutralizing Antibodies

    Get PDF
    <div><p>Dengue is a mosquito-borne viral disease with a global prevalence. It is caused by four closely-related dengue viruses (DENVs 1–4). A dengue vaccine that can protect against all four viruses is an unmet public health need. Live attenuated vaccine development efforts have encountered unexpected interactions between the vaccine viruses, raising safety concerns. This has emphasized the need to explore non-replicating dengue vaccine options. Virus-like particles (VLPs) which can elicit robust immunity in the absence of infection offer potential promise for the development of non-replicating dengue vaccine alternatives. We have used the methylotrophic yeast <i>Pichia pastoris</i> to develop DENV envelope (E) protein-based VLPs. We designed a synthetic codon-optimized gene, encoding the N-terminal 395 amino acid residues of the DENV-2 E protein. It also included 5’ pre-membrane-derived signal peptide-encoding sequences to ensure proper translational processing, and 3’ 6× His tag-encoding sequences to facilitate purification of the expressed protein. This gene was integrated into the genome of <i>P. pastoris</i> host and expressed under the alcohol oxidase 1 promoter by methanol induction. Recombinant DENV-2 protein, which was present in the insoluble membrane fraction, was extracted and purified using Ni<sup>2+</sup>-affinity chromatography under denaturing conditions. Amino terminal sequencing and detection of glycosylation indicated that DENV-2 E had undergone proper post-translational processing. Electron microscopy revealed the presence of discrete VLPs in the purified protein preparation after dialysis. The E protein present in these VLPs was recognized by two different conformation-sensitive monoclonal antibodies. Low doses of DENV-2 E VLPs formulated in alum were immunogenic in inbred and outbred mice eliciting virus neutralizing titers >1∶1200 in flow cytometry based assays and protected AG129 mice against lethal challenge (<i>p</i><0.05). The formation of immunogenic DENV-2 E VLPs in the absence of pre-membrane protein highlights the potential of <i>P. pastoris</i> in developing non-replicating, safe, efficacious and affordable dengue vaccine.</p></div
    corecore