174 research outputs found

    Chemical composition of zircons from the Cornubian Batholith of SW England and comparison with zircons from other European Variscan rare-metal granites

    Get PDF
    This is the author accepted manuscript. The final version is available from the Mineralogical Society via the DOI in this record.Zircon from 14 representative granite samples of the late-Variscan Cornubian Batholith in SW England was analyzed for W, P, As, Nb, Ta, Si, Ti, Zr, Hf, Th, U, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb, Al, Sc, Bi, Mn, Fe, Ca, Pb, Cu, S, and F using EPMA. Zircons from the biotite and tourmaline granites are poor in minor and trace elements, usually containing 1.0–1.5 wt% HfO2, <0.5 wt% UO2 and P2O5, <0.25 wt% Y2O3, <0.2 wt% Sc203 and Bi2O3, and <0.1 wt% ThO2. Zircon from topaz granites from the St. Austell Pluton, Meldon Aplite and Megiliggar Rocks are slightly enriched in Hf (up to 4 wt% HfO2), U (1– 3.5 wt% UO2), and Sc (0.5–1 wt% Sc2O3). Scarce metamictized zircon grains are somewhat enriched in Al, Ca, Fe, and Mn. The decrease of the zircon Zr/Hf ratio, a reliable magma fractionation index, from 110-60 in the biotite granites to 30-10 in the most evolved topaz granites (Meldon Aplite and Megiliggar Rocks), supports a comagmatic origin of the biotite and topaz granites via long fractionation of common peraluminous crustal magma. In comparison with other European rare-metal provinces, the overall contents of trace elements in Cornubian zircons are low and the Zr/Hf- and U/Th-ratios show lower degrees of fractionation of the parental melt.This contribution was supported by the Czech Science Foundation, project No. GA14-13600S and RVO 67985831. Bernard Bingen and one anonymous member of the Editorial Board are thanked for careful review and inspiring comments

    Aspergillus fumigatus preexposure worsens pathology and improves control of Mycobacterium abscessus pulmonary infection in mice

    Get PDF
    ABSTRACT Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Mutations in this chloride channel lead to mucus accumulation, subsequent recurrent pulmonary infections, and inflammation, which, in turn, cause chronic lung disease and respiratory failure. Recently, rates of nontuberculous mycobacterial (NTM) infections in CF patients have been increasing. Of particular relevance is infection with Mycobacterium abscessus , which causes a serious, life-threatening disease and constitutes one of the most antibiotic-resistant NTM species. Interestingly, an increased prevalence of NTM infections is associated with worsening lung function in CF patients who are also coinfected with Aspergillus fumigatus . We established a new mouse model to investigate the relationship between A. fumigatus and M. abscessus pulmonary infections. In this model, animals exposed to A. fumigatus and coinfected with M. abscessus exhibited increased lung inflammation and decreased mycobacterial burden compared with those of mice infected with M. abscessus alone. This increased control of M. abscessus infection in coinfected mice was mucus independent but dependent on both transcription factors T-box 21 (Tbx21) and retinoic acid receptor (RAR)-related orphan receptor gamma t (RORγ-t), master regulators of type 1 and type 17 immune responses, respectively. These results implicate a role for both type 1 and type 17 responses in M. abscessus control in A. fumigatus -coinfected lungs. Our results demonstrate that A. fumigatus , an organism found commonly in CF patients with NTM infection, can worsen pulmonary inflammation and impact M. abscessus control in a mouse model. </jats:p

    Aspergillus flavus-Induced Brain Abscess in an Immunocompetent Child : Case report

    Get PDF
    Intracranial aspergillosis is an extremely rare manifestation of invasive aspergillosis in immunocompetent children and is associated with high morbidity and mortality. We report a 12-year-old immunocompetent male child who was referred to the King Faisal Specialist Hospital &amp; Research Centre, Riyadh, Saudi Arabia, in May 2010 after a sudden-onset headache and loss of consciousness. Brain imaging revealed a large right space-occupying occipital lesion and the patient underwent a craniotomy and resection. Histopathology of the lesion revealed necrotising granulomatous fungal encephalitis with many hyphae engulfed by multinucleated giant histiocytes. Two days later, a computed tomography scan showed debulking of the fungal mass and the patient was discharged on oral voriconazole. However, imaging at a six-week follow-up showed progression of the abnormality. A residual or persistent fungal brain lesion was suspected. Further neurosurgical resection of the lesion was performed and cultures showed growth of Aspergillus flavus. The patient was treated successfully with antifungal therapy over the following two years

    40Ar/39Ar phlogopite geochronology of lamprophyre dykes in Cornwall, UK: new age constraints on Early Permian post-collisional magmatism in the Rhenohercynian Zone, SW England

    Get PDF
    Journal of the Geological Society (2015), http://jgs.lyellcollection.org/content/early/2015/06/03/jgs2014-151. Copyright © Geological Society of London 2015The spatial and temporal association of post-collisional granites and lamprophyre dykes is a common but enigmatic relationship in many orogenic belts, including the Variscan orogenic belt of SW England. The geology of SW England has long been interpreted to reflect orogenic processes associated with the closure of the Rheic Ocean and the formation of Pangaea. The SW England peninsula is composed largely of Early Devonian to Carboniferous volcano-sedimentary successions deposited in synrift and subsequent syncollisional basins that underwent deformation and low-grade regional metamorphism during the Variscan orogeny. Voluminous Early Permian granitic magmatism (Cornubian Batholith) is considered to be broadly coeval with the emplacement of lamprophyric dykes and lamprophyric and basaltic lava flows, largely on the basis of geochronological data from lamprophyric lavas in Devon. Although published geochronological data for Cornish lamprophyre dykes are consistent with this interpretation, these data are limited largely to imprecise K–Ar whole-rock and biotite analyses, hindering the understanding of the processes responsible for their genesis and their relationship to granitic magmatism and regional Variscan tectonics. 40Ar/39Ar geochronological data for four previously undated lamprophyre dykes from Cornwall, combined with published data, suggest that lamprophyre magmatism occurred between c. 293.6 and c. 285.4 Ma, supporting previous inferences that their emplacement was coeval with the Cornubian Batholith. These data provide insights into (1) the relative timing between the lamprophyres and basalts, the Cornubian batholith and post-collisional magmatism elsewhere in the European Variscides, and (2) the post-collisional processes responsible for the generation and emplacement of lamprophyres, basalts and granitoids.NSERC (Canada) Discovery grant

    Does the Meguma Terrane Extend into SW England?

    Get PDF
    The peri-Gondwanan Meguma terrane of southern Nova Scotia, Canada, is the only major lithotectonic element of the northern Appalachian orogen that has no clear correlatives elsewhere in the Appalachians and lacks firm linkages to the Caledonide and Variscan orogens of western and southern Europe. This characteristic is in contrast with its immediate peri-Gondwanan neighbor, Avalonia, which has features in common with portions of Carolinia in the southern Appalachians and has been traced from the Rhenohercynian Zone of southern Britain eastward around the Bohemian Massif to the Carpathians and western Pontides. At issue is the tendency in Europe to assign all peri-Gondwanan terranes lying outboard of the Rheic suture to Avalonia, characterized by relatively juvenile basement and detrital zircon ages that include Mesoproterozoic populations, and those inboard of the suture to Cadomia, characterized by a more evolved basement and detrital zircon ages that match Paleoproterozoic and older sources in the West African craton.    Although the unexposed basements of Avalonia and Meguma are thought to be isotopically very similar, the Meguma sedimentary cover contains scarce Mesoproterozoic zircon and is dominated instead by Neoproterozoic and Paleoproterozoic populations like those of Cadomia. Hence, felsic magma produced by crustal melting in the Meguma terrane (e.g. the ca. 370 Ma South Mountain Batholith) is isotopically more juvenile (eNd = –5 to –1, TDM = 1.3 Ga) than the rocks it intruded (eNd= –12 to –7, TDM = 1.7 Ga). By contrast, felsic magma produced by crustal melting in Avalonia (eNd = –1 to +6, TDM = 0.7–1.2 Ga) is isotopically similar to its host rocks (eNd = –3 to +4, TDM = 0.9–1.4).    The isotopic relationship shown by the Meguma terrane has also been recognized in the South Portuguese Zone of southern Spain, which is traditionally assigned to Avalonia. However, the Sierra Norte Batholith of the South Portuguese Zone (ca. 330 Ma; eNd = +1 to –3, TDM = 0.9–1.2 Ga) is on average more juvenile than the Late Devonian host rocks (eNd = –5 to –11) it intruded, suggesting instead an extension of the Meguma terrane into Europe. Available data for the Cornubian Batholith of SW England (ca. 275–295 Ma; eNd = –4 to –7, TDM = 1.3–1.8 Ga) and the Devonian–Carboniferous metasedimentary rocks it intruded (eNd = –8 to –11) suggests this may also be true of that part of the southern Britain (Rhenohercynian Zone) with which the South Portuguese Zone is traditionally correlated.SOMMAIRELe terrane péri-gondwanien de Meguma en Nouvelle-Écosse au Canada, est le seul grand élément lithotectonique de l’orogène des Appalaches du Nord qui n’ait pas de correspondant avéré ailleurs dans les Appalaches et qui ne montre aucun lien sûr avec les orogènes calédonienne et varisque de l’ouest et du sud de l’Europe.  Cette situation contraste avec celle de son voisin péri-gondwanien immédiat, l’Avalonie, qui partage certaines caractéristiques avec des portions de Carolinia des Appalaches du sud et qui a été suivi à partir de la zone rhénohercynienne dans le sud de la Grande-Bretagne vers l’est autour du massif bohémien jusqu’aux Carpates et l’ouest de la chaîne pontique.  Ce qui est en question ici c’est la tendance en Europe à assigner l’Avalonie à tous les terranes péri-gondwaniens situés à l’extérieur de la suture rhéïque lesquels sont caractérisés par un socle relativement juvénile et des âges de zircons détritiques qui comportent des populations mésoprotérozoïques, et ceux situés à l’intérieur de la suture à Cadomia, lesquels sont caractérisés par un socle plus évolué et des âges de zircons détritiques qui correspondent à des sources du craton ouest africain paléoprotérozoïques et plus anciennes.     Bien que l’on estime que les socles non-exposés des terranes d’Avalonie et de Meguma soient très similaires isotopiquement, le couvert sédimentaire de Meguma ne renferme que de rares zircons mésoprotérozoïques, et ce sont plutôt les populations de zircons néoprotérozoïques et paléoprotérozoïques qui dominent, comme c’est le cas pour Cadomia.  Il en ressort que le magma felsique produit par la fusion de croûte dans le terrane de Meguma (par ex. le batholite de South Mountain de 370 Ma env.) est isotopiquement plus jeune (eNd = –5 à –1, TDM = 1.3 Ga) que les roches qu’il recoupe (eNd= –12 à –7, TDM = 1.7 Ga).  Par opposition, le magma felsique produit par la fusion de la croûte dans le terrane d’Avalonie (eNd = –1 à +6, TDM = 0.7–1.2 Ga) est isotopiquement similaire aux roches de son encaissant (eNd = –3 à +4, TDM = 0.9–1.4).     Le profil isotopique du terrane de Meguma, traditionnellement assignée à l’Avalonie,  a aussi été détecté dans la Zone sud-portugaise du sud de l’Espagne.  Cependant, le batholite de Sierra Norte de la Zone sud-portugaise (ca. 330 Ma; eNd = +1 à –3, TDM = 0.9–1.2 Ga) est en moyenne plus jeune que l’encaissant du Dévonien moyen (eNd = –5 à –11) qu’il recoupe, ce qui permet de penser à une extension du terrane de Meguma en Europe.  Les données disponibles du batholite de Cornubian dans le S-O de l’Angleterre (ca. 275–295 Ma; eNd = –4 à –7, TDM = 1.3–1.8 Ga) et des roches métasédimentaires dévono-carbonifères qu’il recoupe (eNd = –8 to –11) permet de penser qu’il pourrait en être de même de cette portion du sud de la Grande-Bretagne (Zone rhénohercynienne) avec laquelle la Zone sud-portugaise est traditionnellement corrélée

    Constraining the provenance of the Stonehenge ‘Altar Stone’:Evidence from automated mineralogy and U–Pb zircon age dating

    Get PDF
    The Altar Stone at Stonehenge is a greenish sandstone thought to be of Late Silurian-Devonian (‘Old Red Sandstone’) age. It is classed as one of the bluestone lithologies which are considered to be exotic to the Salisbury Plain environ, most of which are derived from the Mynydd Preseli, in west Wales. However, no Old Red Sandstone rocks crop out in the Preseli; instead a source in the Lower Old Red Sandstone Cosheston Subgroup at Mill Bay to the south of the Preseli, has been proposed. More recently, on the basis of detailed petrography, a source for the Altar Stone much further to the east, towards the Wales-England border, has been suggested. Quantitative analyses presented here compare mineralogical data from proposed Stonehenge Altar Stone debris with samples from Milford Haven at Mill Bay, as well as with a second sandstone type found at Stonehenge which is Lower Palaeozoic in age. The Altar Stone samples have contrasting modal mineralogies to the other two sandstone types, especially in relation to the percentages of its calcite, kaolinite and barite cements. Further differences between the Altar Stone sandstone and the Cosheston Subgroup sandstone are seen when their contained zircons are compared, showing differing morphologies and U-Pb age dates having contrasting populations. These data confirm that Mill Bay is not the source of the Altar Stone with the abundance of kaolinite in the Altar Stone sample suggesting a source further east, towards the Wales-England border. The disassociation of the Altar Stone and Milford Haven undermines the hypothesis that the bluestones, including the Altar Stone, were transported from west Wales by sea up the Bristol Channel and adds further credence to a totally land-based route, possibly along a natural routeway leading from west Wales to the Severn estuary and beyond. This route may well have been significant in prehistory, raising the possibility that the Altar Stone was added en route to the assemblage of Preseli bluestones taken to Stonehenge around or shortly before 3000 BC. Recent strontium isotope analysis of human and animal bones from Stonehenge, dating to the beginning of its first construction stage around 3000 BC, are consistent with the suggestion of connectivity between this western region of Britain and Salisbury Plain.This study appears to be the first application of quantitative automated mineralogy in the provenancing of archaeological lithic material and highlights the potential value of automated mineralogy in archaeological provenancing investigations, especially when combined with complementary techniques, in the present case zircon age dating

    The transition from granite to banded aplite-pegmatite sheet complexes: An example from Megiliggar rocks, Tregonning topaz granite, Cornwall

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The genetic relationship between a granite pluton and adjacent complex of rare-metal pegmatite-aplite-banded sheets (Megiliggar Sheet Complex - MSC) has been studied at the border of the Tregonning topaz granite at Megiliggar Rocks, Cornwall, SW England. Similarities in whole-rock chemical and mineralogical compositions, together with a gradual change in textures away from the granite margin, provide strong evidence for a genetic link between the Tregonning Granite and MSC. The sheets are likely to represent apophyses of residual melt which escaped from the largely crystallised roof of the granite pluton. The escaping melt was peraluminous, had a composition near the F, B, Li slightly enriched granite minimum, and, in comparison with other Cornish granites, was enriched in F, Li, Rb, Cs, Sn, W, Nb, Ta, and U, and depleted in Fe, Mg, Ca, Sr, Th, Zr, and REE. With increasing distance from the Tregonning Granite, the silicate melt crystallised as homogeneous leucogranite sheets and banded complex sheets (i.e. combinations of bands with granitic, aplitic and pegmatitic textures), then layered aplite-pegmatites; this sequence becoming progressively more depleted in the fluxing and volatile elements F, Li, Rb, and Cs, but showing no change in Zr/Hf ratios. The fixed Zr/Hf ratio is interpreted as indicating a direct genetic link (parental melt) between all rock types, however the melt progressively lost fluxing and volatile elements with distance from the granite pluton, probably due to wall-rock reaction or fluid exsolution and migration via fractures. Differentiation of the primary melt into Na-Li-F-rich and separate K-B-rich domains was the dominant chemical process responsible for the textural and mineral diversity of the MSC. On a large (cliff-section) scale, the proximal Na-Li-F-rich leucogranite passes through complex sheets into K-B-rich aplite-pegmatites, whilst at a smaller (< 1 m) scale, the K-B-rich bands are interspersed (largely overlain) by Na-Li-F-rich segregations. The grain size differences between the aplite and pegmatite could be related to pressure fluctuations and/or undercooling.Laser-ablation ICP-MS analyses of micas and tourmaline in Masaryk University Brno were supported by the Czech Science Foundation project No. GA14-13600S. All other analytical work for this contribution was supported by the RVO 67985831 in the Institute of Geology of the Czech Academy of Sciences, Praha. We are grateful to P. Davidson and an anonymous referee for their reviews

    A spatial dissection of the Arabidopsis floral transcriptome by MPSS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have further characterized floral organ-localized gene expression in the inflorescence of <it>Arabidopsis thaliana </it>by comparison of massively parallel signature sequencing (MPSS) data. Six libraries of RNA sequence tags from immature inflorescence tissues were constructed and matched to their respective loci in the annotated <it>Arabidopsis </it>genome. These signature libraries survey the floral transcriptome of wild-type tissue as well as the floral homeotic mutants, <it>apetala1, apetala3, agamous</it>, a <it>superman/apetala1 </it>double mutant, and differentiated ovules dissected from the gynoecia of wild-type inflorescences. Comparing and contrasting these MPSS floral expression libraries enabled demarcation of transcripts enriched in the petals, stamens, stigma-style, gynoecia, and those with predicted enrichment within the sepal/sepal-petals, petal-stamens, or gynoecia-stamens.</p> <p>Results</p> <p>By comparison of expression libraries, a total of 572 genes were found to have organ-enriched expression within the inflorescence. The bulk of characterized organ-enriched transcript diversity was noted in the gynoecia and stamens, whereas fewer genes demonstrated sepal or petal-localized expression. Validation of the computational analyses was performed by comparison with previously published expression data, <it>in situ </it>hybridizations, promoter-reporter fusions, and reverse transcription PCR. A number of well-characterized genes were accurately delineated within our system of transcript filtration. Moreover, empirical validations confirm MPSS predictions for several genes with previously uncharacterized expression patterns.</p> <p>Conclusion</p> <p>This extensive MPSS analysis confirms and supplements prior microarray floral expression studies and illustrates the utility of sequence survey-based expression analysis in functional genomics. Spatial floral expression data accrued by MPSS and similar methods will be advantageous in the elucidation of more comprehensive genetic regulatory networks governing floral development.</p
    • …
    corecore