12 research outputs found

    Clathrin heavy chain 22 contributes to the control of neuropeptide degradation and secretion during neuronal development.

    Get PDF
    The repertoire of cell types in the human nervous system arises through a highly orchestrated process, the complexity of which is still being discovered. Here, we present evidence that CHC22 has a non-redundant role in an early stage of neural precursor differentiation, providing a potential explanation of why CHC22 deficient patients are unable to feel touch or pain. We show the CHC22 effect on neural differentiation is independent of the more common clathrin heavy chain CHC17, and that CHC22-dependent differentiation is mediated through an autocrine/paracrine mechanism. Using quantitative proteomics, we define the composition of clathrin-coated vesicles in SH-SY5Y cells, and determine proteome changes induced by CHC22 depletion. In the absence of CHC22 a subset of dense core granule (DCG) neuropeptides accumulated, were processed into biologically active 'mature' forms, and secreted in sufficient quantity to trigger neural differentiation. When CHC22 is present, however, these DCG neuropeptides are directed to the lysosome and degraded, thus preventing differentiation. This suggests that the brief reduction seen in CHC22 expression in sensory neural precursors may license a step in neuron precursor neurodevelopment; and that this step is mediated through control of a novel neuropeptide processing pathway

    A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    Get PDF
    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCÎł activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCÎł pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach.We acknowledge funding from the Medical Research Council (SSS and MSN) and Cambridge Biomedical Research Campus (Y-CC)

    A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development

    Get PDF
    Congenital inability to feel pain is very rare but the identification of causative genes has yielded significant insights into pain pathways and also novel targets for pain treatment. We report a novel recessive disorder characterized by congenital insensitivity to pain, inability to feel touch, and cognitive delay. Affected individuals harboured a homozygous missense mutation in CLTCL1 encoding the CHC22 clathrin heavy chain, p.E330K, which we demonstrate to have a functional effect on the protein. We found that CLTCL1 is significantly upregulated in the developing human brain, displaying an expression pattern suggestive of an early neurodevelopmental role. Guided by the disease phenotype, we investigated the role of CHC22 in two human neural crest differentiation systems; human induced pluripotent stem cell-derived nociceptors and TRKB-dependant SH-SY5Y cells. In both there was a significant downregulation of CHC22 upon the onset of neural differentiation. Furthermore, knockdown of CHC22 induced neurite outgrowth in neural precursor cells, which was rescued by stable overexpression of small interfering RNA-resistant CHC22, but not by mutant CHC22. Similarly, overexpression of wild-type, but not mutant, CHC22 blocked neurite outgrowth in cells treated with retinoic acid. These results reveal an essential and non-redundant role for CHC22 in neural crest development and in the genesis of pain and touch sensing neurons

    Evidence of a genetic background predisposing to complex regional pain syndrome type 1.

    Get PDF
    BackgroundComplex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition.MethodsExome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n=34) compared with population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a replication cohort (n=50). Gene expression of peripheral blood macrophages was assessed.ResultsIn the discovery cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The replication cohort confirmed this finding. In a chronic pain cohort, these alleles were not overexpressed. In total, 25 out of 84 (29.8%) patients with CRPS-1 expressed a rare allele. The SNPs were rs41289586 in ANO10, rs28360457 in P2RX7, rs1126930 in PRKAG1 and rs80308281 in SLC12A9. Males were more likely than females to have a rare SNP allele, 8 out of 14 (57.1%) vs 17 out of 70 (24.3%) (Fisher's p=0.023). ANO10, P2RX7, PRKAG1 and SLC12A9 were all expressed in macrophages from healthy human controls.ConclusionA single SNP in each of the genes ANO10, P2RX7, PRKAG1 and SLC12A9 was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1

    Transcriptional regulator PRDM12 is essential for human pain perception

    No full text
    Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics. © 2015 Nature America, Inc. All rights reserved

    Transcriptional regulator PRDM12 is essential for human pain perception

    No full text
    Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics
    corecore