4 research outputs found
Early diagnosis and effective treatment regimens are the keys to tackle antimicrobial resistance in tuberculosis (TB): a report from Euroscicon's international TB Summit 2016
To say that tuberculosis (TB) has regained a strong foothold in the global human health and wellbeing scenario would be an understatement. Ranking alongside HIV/AIDS as the top reason for mortality due to a single infectious disease, the impact of TB extends far into socio-economic context worldwide. As global efforts led by experts and political bodies converge to mitigate the predicted outcome of growing antimicrobial resistance, the academic community of students, practitioners and researchers have mobilised to develop integrated, inter-disciplinary programmes to bring the plans of the former to fruition. Enabling this crucial requirement for unimpeded dissemination of scientific discovery was the TB Summit 2016, held in London, United Kingdom. This report critically discusses the recent breakthroughs made in diagnostics and treatment while
bringing to light the major hurdles in the control of the disease as discussed in the course of the 3-day international event. Conferences and symposia such as these are the breeding grounds for successful local and global collaborations and therefore must be supported to expand the understanding and outreach of basic science research
Synthesis and antibacterial activities of marine natural product ianthelliformisamines and subereamine synthetic analogues
Marine sponges of the genus Suberea produce variety of brominated tyrosine alkaloids which display diverse range of biological activities including antiproliferative, antimicrobial and antimalarial activities. In continuation of our search for biologically active marine natural products for antibacterial compounds, we report here the synthesis and evaluation of biological activity of panel of ianthelliformisamines and subereamine analogues using the literature known acid-amine coupling reaction. Several derivatives of Ianthelliformisamine were achieved by the coupling of Boc-protected polyamine chain with brominated aromatic acrylic acid derivatives by varying the bromine substituents on aromatic acid derivatives, amine spacer as well as geometry of the double bond, and then Boc-deprotection using TFA. Similarly, subereamine analogues were also synthesized employing coupling reaction between various brominated phenyl acrylic acids with commercially available chiral amino ester derivatives followed by ester hydrolysis. We screened these synthetic analogues for antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. One of the compound 7c showed bactericidal activity against Staphylococcus aureus with an IC50 value of 3.8 μM (MIC = 25 μM)
Repurposing drugs for treatment of tuberculosis: a role for non-steroidal anti-inflammatory drugs
INTRODUCTION: The number of cases of drug-resistant Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has risen rapidly in recent years. This has led to the resurgence in repurposing existing drugs, such as non-steroidal anti-inflammatory drugs (NSAIDs), for anti-TB treatment.
SOURCES OF DATA: Evidence from novel drug screening in vitro, in vivo, pharmacokinetic/pharmacodynamics analyses and clinical trials has been used for the preparation of this systematic review of the potential of NSAIDs for use as an adjunct in new TB chemotherapies.
AREAS OF AGREEMENT: Certain NSAIDs have demonstrated inhibitory properties towards actively replicating, dormant and drug-resistant clinical isolates of M. tuberculosis cells.
AREAS OF CONTROVERSY: NSAIDs are a diverse class of drugs, which have reported off-target activities, and their endogenous antimicrobial mechanism(s) of action is still unclear.
GROWING POINTS: It is essential that clinical trials of NSAIDs continue, in order to assess their suitability for addition to the current TB treatment regimen. Repurposing molecules such as NSAIDs is a vital, low-risk strategy to combat the trend of rapidly increasing antibiotic resistance