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Abstract 

Introduction  

The number of cases of drug-resistant Mycobacterium tuberculosis, the causative agent of 

tuberculosis (TB), has risen rapidly in recent years. This has led to the resurgence in 

repurposing existing drugs, such as non-steroidal anti-inflammatory drugs (NSAIDs), for anti-

TB treatment.  

Sources of data 

Evidence from novel drug screening in vitro, in vivo, pharmacokinetic/pharmacodynamics 

analyses and clinical trials has been used for the preparation of this systematic review of the 

potential of NSAIDs for use as an adjunct in new TB chemotherapies.  

Areas of agreement 

Certain NSAIDs have demonstrated inhibitory properties towards actively-replicating, 

dormant and drug-resistant clinical isolates of M. tuberculosis cells.  

Areas of controversy  

NSAIDs are a diverse class of drugs, which have reported off-target activities and their 

endogenous antimicrobial mechanism(s) of action is still unclear.  

Growing points  

It is essential that clinical trials of NSAIDs continue, in order to assess their suitability for 

addition to the current TB treatment regimen. Repurposing molecules such as NSAIDs is a 

vital, low-risk strategy to combat the trend of rapidly increasing antibiotic resistance.  

Keywords: Tuberculosis, antimicrobial resistance, drug repurposing, NSAIDs, Carprofen, 

Mycobacterium.  
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Introduction  

Despite an effective tuberculosis (TB) treatment regimen being in place for several decades, 

the disease remains responsible for over 1.5 million deaths every year. Nearly a fifth is due 

to multi-drug resistant (MDR) strains that do not respond to the front-line drugs available for 

TB treatment.1 This has provided the much needed impetus for the discovery and 

development of novel, more effective and safer anti-tubercular chemotherapeutics.2-4 

However, there is a high attrition rate of lead molecules passing from pre-clinical 

development to phase I clinical studies.5 This has led to a shortage of novel molecules 

available for further development and incorporation into successful anti-tubercular therapy. 

While pharmaceutical companies are investing upwards of $500million and 15 to 20 years’ 

work in anti-infective research projects, the number of novel molecular entities approved by 

organisations such as the U.S. Food and Drug Administration (FDA), has been on a 

declining trend.6  Workers in the field have identified an urgent need for new treatments and 

are shifting focus to repurpose drugs, either abandoned or still in use to treat other diseases, 

to combat the shortfall in productivity.7 As a result, the current clinical trials pipeline for anti-

tuberculosis therapy contains novel and pre-existing drugs that are being tested for their 

efficacy in combinatorial treatment regimens.8 

Repurposing drugs involves discovering novel drug-target interactions of established drug 

treatments, with an aim to use them to treat different diseases. It is a strategy that has 

regained the interest of pharmaceutical companies and academic scientists alike for its 

potential to reduce investments, de-risk clinical activities and shorten the time required to 

market a drug for its new use. Many drugs have been successfully repurposed  to-date.7 

Amongst these, thalidomide, first used as a morning sickness remedy with disastrous 

results, was approved for treatment of multiple myeloma and has since been repurposed for 

leprosy treatment.9 It has also found use in managing  severe treatment-associated 

paradoxical reactions in paediatric TB meningitis.10  
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The presence of gaps in drug-target interaction profiles is the most common barrier in 

repurposing molecular entities.11 As discussed by Kinnings et al., integrating the tools 

presented by computational and systems biology approaches will likely provide new insights, 

helping to de-mystify drug-interaction networks by successfully identifying possible off-

targets of existing drugs.12 They report that only 9 out of the 3,999 proteins encoded by M. 

tuberculosis are targets for drugs currently in use. Thus, building comprehensive drug-target 

interaction networks will reveal novel solutions to overcome the various resistance 

mechanisms developed by the causal pathogen. 

As mentioned earlier, many anti-infectives previously used for other disease indications are 

being considered for, or are already in various phases of in vitro/ in vivo, as well as 

advanced clinical trial studies (Figure1).8, 13 Several fluoroquinolone antibiotics and specific 

drugs such as clofazimine, linezolid, and metronidazole are a few examples  and have been 

reviewed elsewhere.14, 15 On the other hand, therapeutic agents originally intended to work 

upon various host-related systems have shown anti-infective properties specific to M. 

tuberculosis. Medications used to treat varied, unrelated human conditions such as 

psychoses and angina, serve to inhibit the multi-drug efflux pumps in M. tuberculosis thereby 

increasing the pathogen’s susceptibility to other drugs.16, 17 Several phosphodiesterase 

inhibitors have also shown promise as adjuvants for host-directed therapy.18  

Of special interest are common, inexpensive non-steroidal anti-inflammatory drugs (NSAIDs) 

such as oxyphenbutazone and the 2-arylpropanoic acid family of drugs that have been found 

to be anti-tubercular. These drugs act upon replicating, dormant and also drug-resistant 

clinical isolates of M. tuberculosis.19, 20 Here, we discuss the possibility of these NSAIDs, 

never previously considered for their anti-infective action, being repurposed as a part of new 

TB chemotherapy.  
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NSAIDs offer a promising TB treatment strategy 

The great potential for repurposing offered by NSAIDs in the context of anti-tuberculosis 

therapy has been recognised relatively recently.19-21  NSAIDs have captured the attention of 

the scientific community, both for their biological activities and the ease with which these off-

patent drugs can be repurposed. Many members of this class of molecules have shown 

selective anti-mycobacterial properties, along with possible pleotropic endogenous 

mechanisms of anti-tubercular action.19  

NSAIDs are a group of molecules from chemically diverse families (Figure 2) that suppress 

inflammation by inhibiting the formation of prostaglandins, the mediators of inflammatory 

response. They achieve this by inhibiting cyclo-oxygenase enzymes, COX-1 and COX-2, 

involved in the synthesis of prostaglandins and other prostanoids. Classical NSAIDs block 

both enzymes without differentiation, however, newer COX-2 inhibitors are selective (e.g. 

celecoxib), and thus exhibit less gastric irritation as an adverse effect - increasing their 

popularity.  There is significant evidence supporting the notion that some of these drugs also 

modulate immune responses via pathways independent of the cyclooxygenase-

prostaglandin route.22, 23  

Although originally utilised for anti-inflammatory, analgesic and antipyretic purposes, NSAIDs 

have been shown to have potential in the treatment of various cancers and 

neurodegenerative diseases such as Alzheimer’s.24 They have subsequently been found to 

possess inhibitory as well as bactericidal properties against a wide range of pathogens, both 

Gram-positive and Gram-negative, including Enterococcus faecalis and Helicobacter pylori 

respectively.25, 26  

Diclofenac 

Diclofenac sodium was found to be bactericidal against Escherichia coli, Listeria 

monocytogenes as well as M. tuberculosis.27 Encouraged by in vitro and in vivo studies 
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using the drug, investigations were extended and synergism was identified with streptomycin 

in murine tuberculosis.28  

Diclofenac acid hydrazones and amides have also been shown to reduce lung and spleen 

bacillary loads by approximately 3.66 log10 in mouse infection models at a dose of 25 

mg/kg.29  Inhibition of incorporation of thymidine, vital to DNA synthesis, has been reported 

as one of the likely mechanisms for the bactericidal action of diclofenac in E. coli and Listeria 

spp.30 

Metal complexes 

Using metal complexes with active NSAIDs as ligands has proven to be a useful strategy in 

developing antimicrobials and has also been used to impart anti-tubercular properties to a 

selected group of NSAIDs that showed no such property prior to modification.31 These 

organotin complexes of mefenamic, meclofenamic acid, indometacin, and tenoxicam 

showed in vitro MIC values of <1 µg/mL against M. tuberculosis and can be considered 

excellent lead molecules for development of a new class of anti-tuberculars.32 However, the 

report failed to provide information regarding the bacteria-specific selectivity of the 

aforementioned drug complexes. The toxicity of organotin(IV) towards eukaryotic cells has 

raised concerns thereby limiting the immediate applications of these complexes in medicinal 

use.33 

Oxyphenbutazone 

A high-throughput phenotypic screen revealed that oxyphenbutazone selectively inhibits the 

non-replicating subset of the M. tuberculosis pathogen whilst having no effect on the 

replicating bacteria.19 One of the primary reasons for the lengthy duration of tuberculosis 

treatment is the need to eliminate non-replicating bacteria or ‘persisters’, that are difficult to 

treat due to their physiological status and unique endogenous metabolism.34 In the Gold et 

al. model, the environment to which the drug was exposed (mildly acidic and high in reactive 

nitrogen intermediates) resulted in its hydroxylation; and the compound produced was 
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shown to be active against both, replicating and non-replicating bacilli in isolation. In 

addition, it was also found to be synergistic with oxidants and several conventional anti-

tubercular drugs such as p-aminosalicylate.19 The modified oxyphenbutazone served to 

deplete thiols and flavins, thereby potentially affecting a number of enzymatic reactions 

within the cell. The inability to generate spontaneous mutants further reinforces the 

argument that the endogenous mechanism of action of this drug may be multi-factorial.  

However, in spite of being used regularly in veterinary medicine, its use in humans is 

restricted in the light of sporadic reports of fatal bone marrow depression caused as a side-

effect of the medication.35  

Celecoxib 

Among the NSAIDs promising fewer adverse effects, the COX-2 selective celecoxib was 

reported to reverse multidrug resistance of methicillin-resistant Staphylococcus aureus 

(MRSA) by inhibiting the bacterial efflux mechanism.36 A similar effect was noted in M. 

smegmatis and its action is expected to be through an unknown protein that regulates the 

MDR-1 efflux pumps in bacteria.36 This hypothesis is further substantiated by the fact that 

the drug exerts effects on COX-2 which in turn regulates the homologous MDR-1 pumps in 

humans.37 Debilitating the extrusion mechanisms of bacteria is a powerful strategy to 

reverse resistance and tolerance seen in planktonic and bacterial biofilms. In the context of 

combination therapy, this introduces the possibility of reducing the dose or shortening the 

duration of treatment.  

Based on the active pharmacophore of celecoxib, analogues that show potent inhibitory 

activity against S. aureus and M. tuberculosis have been synthesized and efforts to further 

optimise these compounds are ongoing.38  
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Aspirin 

Aspirin is a salicylate anti-inflammatory drug which in addition to primary use has shown to 

potentiate or act synergistically when used in conjunction with the front line anti-TB drug, 

pyrazinamide in a mouse-infection model study.39 Gene expression profiling of M. 

tuberculosis in response to salicylate has shown to down-regulate genes involved in energy 

production. This could explain the synergy between the salicylate and pyrazinamide which is 

also known to deplete membrane energy and potential and thereby disrupt transport.  

However, aspirin has also demonstrated modest antagonistic activity towards isoniazid 

raising the importance of evaluating at what time-point in the treatment regimen should 

NSAIDs be included in the therapy.40, 41 A randomised study on the role of aspirin in TB 

meningitis suggested aspirin in combination with corticosteroids reduced the incidence of 

strokes and mortality.42 A similar study on the role of aspirin as an adjunct with steroids for 

the treatment of HIV-negative adults with TB meningitis in Vietnam is still ongoing (clinical 

trials identifier: NCT02237365). 

Ibuprofen  

Our whole-cell phenotypic evaluation studies using Spot culture growth inhibition assay 

(SPOTi),20, 43-45 to screen a library of over-the-counter medicines, revealed commonly used 

NSAIDs ibuprofen and carprofen, and their analogues selectively inhibited the growth of 

replicating, non-replicating and even drug-resistant clinical isolates of the tubercle bacilli.20 

As some of the previously mentioned NSAIDs, ibuprofen also exhibits anti-fungal and anti-

bacterial properties.46, 47 Moreover, studies have demonstrated that it has a marked effect on 

reducing bacillary loads in the lung tissue of mouse infection models - in addition to 

exhibiting synergism with pyrazinamide.39, 48, 49 It was shown to be effective at reducing TB 

burden in necrotising pulmonary granulomas, thereby conferring a level of protection from 

the disease. Eisen et al. postulate that this effect is not mediated by a direct anti-

inflammatory mechanism, as this would require higher doses of the drug than the 80mg/kg 
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daily administrations.49 They propose that ibuprofen acts via inhibiting tumour necrosis factor 

(TNFα-an inflammatory cytokine) to block granuloma formation. 

The FDA-approved maximum daily intake for ibuprofen is 3200 mg, and on prolonged 

administration of the drug, a peak plasma concentration of up to 90.4 µg/mL can be 

obtained.50 This is well within the concentrations required to achieve anti-tubercular specific 

action in vitro.20 Additionally, ibuprofen has been shown to be safe in various clinical trials,51 

with a low risk of irreversible liver damage more commonly associated with paracetamol and 

aspirin. Additionally, its pharmacokinetic properties include a short plasma half-life (under 3 

hours), resulting in the drug being eliminated before it can form deleterious metabolites.52 

This short time for elimination also reduces the risk of gastrointestinal and renal damage in 

the long term.53 

Carprofen 

Amongst the NSAIDs tested, carprofen was found to be the best candidate based on its low 

MIC of 40 µg/mL and high selectivity index of 25 making it highly specific towards bacterial 

cells at concentrations non-toxic to eukaryotic cells.20  

Carprofen was marketed for systemic human use as an analgesic, for nearly ten years since 

the 1980s. The human clinical trials of the drug reported only mild and transient side-effects 

to its use.54 Possessing a higher affinity towards COX-2, it is expected to produce milder 

side-reactions than its non-selective counterparts. In healthy subjects, carprofen is absorbed 

rapidly and the peak plasma concentration is reached after an hour of its administration.55 

Crevosier et al. also reported that and the absolute bioavailability of the oral forms reached 

values of over 90%. Despite limited data implying that it has a good safety profile in humans 

when used at a range of 150-600 mg/day, carprofen was discontinued from the human 

market for commercial reasons.56 Carprofen is a photosensitizing drug and reports of 

phototoxic and photo-allergic contact dermatitis may have precipitated the situation further. 

57, 58 It was re-introduced in several parts of the world under various trade names (Rimadyl, 



10 
 

Norocarp, etc.) as pain-relieving medication for veterinary treatment. Pharmacokinetic 

studies of carprofen in mice and cows showed an extended half-life of the drug; however, in 

both cases the concentrations of carprofen administered was lower than the maximum 

approved dose.59, 60  

The clinical implications of these findings are yet to be fully realised as there are no 

conclusive data on the effects of ibuprofen or carprofen on tuberculosis treatment outcomes. 

At present, WHO guidelines recommend incorporating NSAIDs into tuberculosis therapies, 

though this aimed at reducing the joint pain side effects caused by pyrazinamide, rather than 

as a means to treat the symptoms of tuberculosis per se.61  A novel phase III trial 

(ClinicalTrials.gov Identifier: NCT02060006) to evaluate the feasibility and efficacy of using 

meloxicam, a cheap and widely available NSAID, as a preventive intervention for TB-

immune reconstituted inflammatory syndrome (IRIS) is currently underway and results from 

the study are awaited.  

 

Mechanism of action  

Developing modified molecules of these drugs with improved anti-mycobacterial efficacy 

requires knowledge of their mechanisms of action. Based on comparative bioinformatics 

investigation, initiation factor 2, a key player in protein translation initiation in bacteria,62 

appeared to be the likely target of this family of molecules.20 Using transcriptomic analysis 

we have also identified significant modulation of a number of key metabolic pathways in M. 

tuberculosis.63 Similar analyses also found aspirin to down-regulate the machinery required 

for transcription and translation in M. tuberculosis.64 A recent study investigated the binding 

efficiencies of carprofen, bromfenac and vedaprofen to the DNA polymerase III β subunit 

(commonly known as the ‘sliding clamp protein’) of E. coli, to verify inhibition of DNA 

replication and repair as the bactericidal mechanism of action.65 However the affinity of the 

drugs to the sliding clamp does not directly equate to their bactericidal property. Vedaprofen 
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has the highest affinity to E. coli sliding clamp yet the MIC of the drug against it is one of the 

highest (1,410 µg/mL). Carprofen exhibits an MIC of 680 µg/mL, one of the best performing 

NSAIDs chosen for the study, however its affinity to the E. coli sliding clamp is moderate at 

best. This lack of correlation between binding affinities and MIC could be due to differences 

in the membrane permeability of the drugs. The lower MIC of carprofen also serves as a 

strong argument in favour of the presence of other endogenous target(s) of the drug in E. 

coli.  

Comparing the detailed crystal structures of the orthologues from E. coli  and M. tuberculosis 

revealed marked differences in the secondary structures forming the key motifs and whether 

similar binding affinities will be observed with mycobacterial orthologues remains uncertain.66 

This warrants for a similar assay with the mycobacterial protein counterparts with the 

NSAIDs to confirm or disprove the presence of any association between the two.    

Unveiling the anti-mycobacterial mechanism of action of the NSAIDs would help in 

identifying possible interactions with the other front-line drugs used for TB therapy. It is 

known that aspirin displays alternating effects when used with certain routine anti-TB drugs, 

potentiating some whereas debilitating others. Antagonism observed in the case of use of 

aspirin with isoniazid warrants investigation of the effects of adjunctive treatment of aspirin 

with other hydralazine drugs. Additionally, most NSAIDS have been shown to increase the 

adverse effects of para-aminosalicylic acid.67 The other challenges in including NSAIDs in 

therapy would be to overcome the gastrointestinal effects of these drugs, however, these 

effects are modest compared to the hepatotoxicity exerted by the established anti-TB drugs. 

To better understand the role of NSAIDs in alleviating infection and its symptoms, the host-

pathogen interaction and inflammatory responses of the host require in-depth research.  

 

The role of immune-modulation in tuberculosis  
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Inflammation, observed due to M. tuberculosis infection is a host immune-response to the 

pathogen itself in combination with the action of the cocktail of anti-TB drugs administered. 

Early inflammatory responses are beneficial to the host as they serve to kill or sequester the 

organism in highly structured granulomas. However, prolonged inflammatory responses are 

detrimental, leading to the formation of pathological lesions that play a fundamental role in 

the transmission of the disease and its exacerbation.68 Therefore, therapy that is tailored to 

moderate the hypo- as well as hyper-responses could result in improvements in treatment 

outcome.69  

Use of corticosteroids to control inflammation and reduce mortality from TB meningitis is 

already an established clinical practice and though they effect in very separate ways, this 

outcome supports the inclusion of NSAIDs in tuberculosis treatment regimens. When used 

as part of anti-tuberculosis therapy, NSAIDs are expected to influence both host- and 

pathogen-directed effects. However, the authors would like to add a caveat that though 

modulating macrophage response might prove useful to control the disease, the balance 

between cellular and chemokine responses is an area poorly understood in the context of 

host response to tuberculosis infection and vice versa.  

 

Alternative modes and/or routes of delivery 

Recently, there has been an increase in the investigation of delivery routes that optimise 

anti-TB therapies. In particular, a growing number of researchers support delivery of anti-TB 

drugs via aerosol formulations. The inhalation of an anti-tubercular drug using either a 

nebuliser or a dry powder form, makes it is more likely to penetrate the alveoli and lung 

parenchyma thereby preventing establishment and progression of TB infection. Furthermore, 

delivering therapies in this way enables the primary site of the disease to be targeted 

directly, ensuring that the local concentration of the drug exceeds the MIC. Delivery of 

second line drug, capreomycin in a dry powder form has undergone testing in phase I clinical 

trials in a small number of healthy volunteers.70 Promisingly, it was found to be well-tolerated. 
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Many other anti-tubercular compounds have been tested with similarly positive results, 

providing sufficient evidence to support pursing further research in this area. Rifamipicin 

loaded on chitosan particles is also proving to be an area of interest as these allow for a 

concentration-independent sustained release which could have significant impact on 

lowering the side-effects of chemotherapy as well as improving patient compliance as the 

dosing frequency would be reduced.71 

A recent study suggests that the NSAID ibuprofen might be administered via the pulmonary 

route, by encapsulating it within gel micro-particles. However, although the authors found the 

drug retained 50% activity against Candida albicans, further testing is vital before the 

potential of this delivery method can be validated.72 In short, the delivery of anti-tubercular 

drugs via the aerosol route represents an exciting area for improving the efficacy of current 

TB therapies.70  

Conclusion 

While it becomes imperative to find new drugs to control TB it is also important to continually 

revise, redefine and perhaps, reclassify drugs that are already in use. The advantages 

offered by repurposing are manifold. It is crucial to understand not only their secondary 

targets but also the endogenous molecular mechanisms of action and how it would translate 

in a multi-drug combinatorial treatment regimen. Identifying how these drugs work would 

strengthen their case for inclusion in clinical trials as well as pave the way for designing 

more targeted drugs. As the search to find novel drugs to tackle antimicrobial resistance 

deepens, there is a need to evaluate the driving forces of resistance and widen our search to 

novel concepts as well to find a better cure for TB than what exists today.  

NSAIDs have rightly been hailed for their anti-inflammatory properties but their anti-infective 

property needs to be investigated further as the combined effects promise a significant 

improvement in treatment outcomes. It is encouraging to note that structural modifications to 
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improve the antimicrobial activities of NSAIDs such as ibuprofen and carprofen are already 

underway.73 

 

In a TB treatment setting, NSAIDs are primarily used to alleviate the symptoms that arise 

from the effects of this protracted disease and its therapy. These compounds have proven 

pharmacokinetic/ dynamic and toxicity profiles in basic animal models and there is 

reasonable evidence to justify their inclusion into early clinical trials. However, the best 

administration routes and the stage of infection at which treatment is administered (early or 

late infection) require critical consideration before initiation of any further investigation in a 

clinical setting.  
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Figure Legends 

Figure 1: The possible endogenous mechanisms of action of repurposed drugs. The drugs 

and their targets are highlighted in the buff- and green-coloured boxes, respectively. The 

anagram MAGP is used to indicate the mycolic acid-arabinogalactan-peptidoglycan layer of 

the mycobacterial cell wall and PBP refers to the penicillin binding proteins responsible for 

the maturation of the cell wall peptidoglycan. 

Figure 2: Chemical classes and the structures of the various NSAIDs under investigation for 

their antimicrobial properties 
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