32 research outputs found
Cloud detection and classification based on MAX-DOAS observations
Multi-axis differential optical absorption spectroscopy (MAX-DOAS)
observations of aerosols and trace gases can be strongly influenced by
clouds. Thus, it is important to identify clouds and characterise their
properties. In this study we investigate the effects of clouds on several
quantities which can be derived from MAX-DOAS observations, like radiance, the colour index (radiance ratio at two selected wavelengths), the
absorption of the oxygen dimer O<sub>4</sub> and the fraction of inelastically
scattered light (Ring effect). To identify clouds, these quantities can be
either compared to their corresponding clear-sky reference values, or their
dependencies on time or viewing direction can be analysed. From the
investigation of the temporal variability the influence of clouds can be
identified even for individual measurements. Based on our investigations we
developed a cloud classification scheme, which can be applied in a flexible
way to MAX-DOAS or zenith DOAS observations: in its simplest version, zenith
observations of the colour index are used to identify the presence of clouds
(or high aerosol load). In more sophisticated versions, other
quantities and viewing directions are also considered, which allows
subclassifications like, e.g., thin or thick clouds, or fog. We applied our
cloud classification scheme to MAX-DOAS observations during the
Cabauw intercomparison campaign of Nitrogen Dioxide measuring instruments
(CINDI)
campaign in the Netherlands in summer 2009 and found very good agreement
with sky images taken from the ground and backscatter profiles from a lidar
Estimation of NOx Emissions from Delhi Using Car MAX-DOAS Observations and Comparison with OMI Satellite Data
We present the first Multi-Axis-(MAX-) DOAS observations in India performed during April 2010 and January 2011 in Delhi and nearby regions. The MAX-DOAS instrument was mounted on a car roof, which allowed us to perform measurements along individual driving routes. From car MAX-DOAS observations along closed circles around Delhi, together with information on wind speed and direction, the NOx emissions from the greater Delhi area were determined: our estimate of 4.4 x 10(25) molecules s(-1) is found to be slightly lower than the corresponding emission estimates using the EDGAR emission inventory and substantially smaller compared to a recent study by Gurjar et al. (2004). We also determined NOx emissions from Delhi using OMI satellite observations on the same days. These emissions are slightly smaller than those from the car MAX-DOAS measurements. Finally the car MAX-DOAS observations were also used for the validation of simultaneous OMI satellite measurements of the tropospheric NO2 VCD and found a good agreement of the spatial patterns. Concerning the absolute values, OMI data are, on average, higher than the car MAX-DOAS observations close to strong emission sources, and vice versa over less polluted regions. Our results indicate that OMI NO2 VCDs are biased low over strongly polluted regions, probably caused by inadequate a-priori profiles used in the OMI satellite retrieval
Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements
A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O-4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O-4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R > 0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.Peer reviewe
Is a scaling factor required to obtain closure between measured and modelled atmospheric Oâ‚„ absorptions? An assessment of uncertainties of measurements and radiative transfer simulations for 2 selected days during the MAD-CAT campaign
In this study the consistency between MAX-DOAS measurements and radiative transfer simulations of the atmospheric O4 absorption is investigated on 2 mainly cloud-free days during the MAD-CAT campaign in Mainz, Germany, in summer 2013. In recent years several studies indicated that measurements and radiative transfer simulations of the atmospheric O4 absorption can only be brought into agreement if a so-called scaling factor (<1) is applied to the measured O4 absorption. However, many studies, including those based on direct sunlight measurements, came to the opposite conclusion, that there is no need for a scaling factor. Up to now, there is no broad consensus for an explanation of the observed discrepancies between measurements and simulations. Previous studies inferred the need for a scaling factor from the comparison of the aerosol optical depths derived from MAX-DOAS O4 measurements with that derived from coincident sun photometer measurements. In this study a different approach is chosen: the measured O4 absorption at 360 nm is directly compared to the O4 absorption obtained from radiative transfer simulations. The atmospheric conditions used as input for the radiative transfer simulations were taken from independent data sets, in particular from sun photometer and ceilometer measurements at the measurement site. This study has three main goals: first all relevant error sources of the spectral analysis, the radiative transfer simulations and the extraction of the input parameters used for the radiative transfer simulations are quantified. One important result obtained from the analysis of synthetic spectra is that the O4 absorptions derived from the spectral analysis agree within 1 % with the corresponding radiative transfer simulations at 360 nm. Based on the results from sensitivity studies, recommendations for optimised settings for the spectral analysis and radiative transfer simulations are given. Second, the measured and simulated results are compared for 2 selected cloud-free days with similar aerosol optical depths but very different aerosol properties. On 18 June, measurements and simulations agree within their (rather large) uncertainties (the ratio of simulated and measured O4 absorptions is found to be 1.01±0.16). In contrast, on 8 July measurements and simulations significantly disagree: for the middle period of that day the ratio of simulated and measured O4 absorptions is found to be 0.82±0.10, which differs significantly from unity. Thus, for that day a scaling factor is needed to bring measurements and simulations into agreement. Third, recommendations for further intercomparison exercises are derived. One important recommendation for future studies is that aerosol profile data should be measured at the same wavelengths as the MAX-DOAS measurements. Also, the altitude range without profile information close to the ground should be minimised and detailed information on the aerosol optical and/or microphysical properties should be collected and used.
The results for both days are inconsistent, and no explanation for a O4 scaling factor could be derived in this study. Thus, similar but more extended future studies should be performed, including more measurement days and more instruments. Also, additional wavelengths should be included
Spatial variance and assessment of nitrogen dioxide pollution in major cities of Pakistan along N5-Highway
This paper discusses the findings of the first car MAX-DOAS (multi-axis differential optical absorption spectroscopy) field campaign (300 km long) along the National Highway-05 (N5-Highway) of Pakistan conducted on 13 and 14 November, 2012. The main objective of the field campaign was to assess the spatial distribution of tropospheric nitrogen dioxide (NO2) columns and corresponding concentrations along the N5-Highway from Islamabad to Lahore. Source identification of NO2 revealed that the concentrations were higher within major cities along the highway. The highest NO2 vertical column densities (NO2 VCDs) were found around two major cities of Rawalpindi and Lahore. This study also presents a comparison of NO2 VCDs measured by the ozone monitoring instrument (OMI) and car MAX-DOAS observations. The comparison revealed similar spatial distribution of the NO2 columns with both car MAX-DOAS and satellite observations, but the car MAX-DOAS observations show much more spatial details. Maximum NO2 VCD retrieved from car MAX-DOAS observations was up to an order of magnitude larger than the OMI observations in urban areas. (C) 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V
Determination of NOx emissions from Frankfurt Airport by optical spectroscopy (DOAS) – A feasibility study
Standard methods like in-situ measurements can hardly register NOx (= NO + NO2) emissions from aircrafts during take-off, when engines run at high load and thus an important amount of fuel is consumed and most of the harmful emissions are produced . The goal of this work is to show that it is possible to measure aircraft emissions generated during take-off (and initial part of the climb) by a remote spectroscopic method like automobile – based – Differential Optical Absorption Spectroscopy (Mobile-DOAS), which uses scattered solar radiation in the blue spectral range (around 445 nm). In order to test its feasibility, total column measurements of NO2 encircling Frankfurt Airport were carried out on 23 February 2012 using Mobile-DOAS. Also, NOx fluxes were derived from the NO2 observations. Unlike standard mobile-DOAS measures using a spectrometer looking at zenith, the measurements were performed looking at 22° elevation angle leading to a roughly two to three times higher sensitivity compared to zenith observations. The origin of the observed NO2 is discussed and the total NOx fluxes are calculated. As result of three round-trips encircling the Frankfurt Airport, the mean NOx flux was found to correlate with the number of aircrafts taking-off. Our results demonstrate that mobile-DOAS method is suitable for quantifying emissions from airports and to study their impact in the planetary boundary layer, which is most relevant concerning the impact on the environment and the human health
Absolute calibration of the colour index and O-4 absorption derived from Multi AXis (MAX-)DOAS measurements and their application to a standardised cloud classification algorithm
A method is developed for the calibration of the colour index (CI) and the O-4 absorption derived from differential optical absorption spectroscopy (DOAS) measurements of scattered sunlight. The method is based on the comparison of measurements and radiative transfer simulations for well-defined atmospheric conditions and viewing geometries. Calibrated measurements of the CI and the O-4 absorption are important for the detection and classification of clouds from MAX-DOAS observations. Such information is needed for the identification and correction of the cloud influence on Multi AXis (MAX-) DOAS profile inversion results, but might be also be of interest on their own, e.g. for meteorological applications. The calibration algorithm was successfully applied to measurements at two locations: Cabauw in the Netherlands and Wuxi in China. We used CI and O-4 observations calibrated by the new method as input for our recently developed cloud classification scheme and also adapted the corresponding threshold values accordingly. For the observations at Cabauw, good agreement is found with the results of the original algorithm. Together with the calibration procedure of the CI and O-4 absorption, the cloud classification scheme, which has been tuned to specific locations/conditions so far, can now be applied consistently to MAX-DOAS measurements at different locations. In addition to the new threshold values, further improvements were introduced to the cloud classification algorithm, namely a better description of the SZA (solar zenith angle) dependence of the threshold values and a new set of wavelengths for the determination of the CI. We also indicate specific areas for future research to further improve the cloud classification scheme