13 research outputs found

    Sequence-to-Sequence Contrastive Learning for Text Recognition

    Get PDF
    We propose a framework for sequence-to-sequence contrastive learning (SeqCLR) of visual representations, which we apply to text recognition. To account for the sequence-to-sequence structure, each feature map is divided into different instances over which the contrastive loss is computed. This operation enables us to contrast in a sub-word level, where from each image we extract several positive pairs and multiple negative examples. To yield effective visual representations for text recognition, we further suggest novel augmentation heuristics, different encoder architectures and custom projection heads. Experiments on handwritten text and on scene text show that when a text decoder is trained on the learned representations, our method outperforms non-sequential contrastive methods. In addition, when the amount of supervision is reduced, SeqCLR significantly improves performance compared with supervised training, and when fine-tuned with 100% of the labels, our method achieves state-of-the-art results on standard handwritten text recognition benchmarks

    Seawater carbonate chemistry in a decoupled DIC-pH laboratory experiment

    No full text
    Calcification, respiration and photosynthesis of the widespread diatom-bearing Larger benthic foraminifer Operculina ammonoides were measured in laboratory experiments that included manipulation of carbonate chemistry parameters. pH was altered while keeping Dissolved Inorganic Carbon (DIC) constant, and DIC was altered while keeping pH constant. The data set contains alkalinity, pH and oxygen measurements with calculations of calcification, carbonate chemistry parameters, photosynthesis and respiration. excel sheet 1: natural sea water results. excel sheet 2: pH-DIC manipulated water results

    Seawater carbonate chemistry and calcification, respiration, and photosynthesis of the widespread diatom‐bearing LBF Operculina ammonoides

    No full text
    Larger benthic foraminifera (LBF) are unicellular eukaryotic calcifying organisms and an important component of tropical and subtropical modern and ancient oceanic ecosystems. They are major calcium carbonate producers and important contributors to primary production due to the photosynthetic activity of their symbiotic algae. Studies investigating the response of LBF to seawater carbonate chemistry changes are therefore essential for understanding the impact of climate changes and ocean acidification (OA) on shallow marine ecosystems. In this study, calcification, respiration, and photosynthesis of the widespread diatom‐bearing LBF Operculina ammonoides were measured in laboratory experiments that included manipulation of carbonate chemistry parameters. pH was altered while keeping dissolved inorganic carbon (DIC) constant, and DIC was altered while keeping pH constant. The results show clear vulnerability of O. ammonoides to low pH and CO32− under constant DIC conditions, and no increased photosynthesis or calcification under high DIC concentrations. Our results call into question previous hypotheses, suggesting that mechanisms such as the degree of cellular control on calcification site pH/DIC and/or enhanced symbiont photosynthesis in response to OA may render the hyaline (perforate and calcitic‐radial) LBF to be less responsive to OA than porcelaneous LBF. In addition, manipulating DIC did not affect calcification when pH was close to present seawater levels in a model encompassing the total population size range. In contrast, larger individuals (>1,200 μm, >1 mg) were sensitive to changes in DIC, a phenomenon we attribute to their physiological requirement to concentrate large quantities of DIC for their calcification process

    Best-Buddies Similarity—Robust Template Matching Using Mutual Nearest Neighbors

    No full text
    We propose a novel method for template matching in unconstrained environments. Its essence is the Best-Buddies Similarity (BBS), a useful, robust, and parameter-free similarity measure between two sets of points. BBS is based on counting the number of Best-Buddies Pairs (BBPs) - pairs of points in source and target sets that are mutual nearest neighbours, i.e., each point is the nearest neighbour of the other. BBS has several key features that make it robust against complex geometric deformations and high levels of outliers, such as those arising from background clutter and occlusions. We study these properties, provide a statistical analysis that justifies them, and demonstrate the consistent success of BBS on a challenging real-world dataset while using different types of features.Israel Science Foundation (Grant 1917/2015)National Science Foundation (U.S.) (1212849)Shell Researc

    Best-Buddies Similarity for robust template matching

    No full text
    We propose a novel method for template matching in unconstrained environments. Its essence is the Best-Buddies Similarity (BBS), a useful, robust, and parameter-free similarity measure between two sets of points. BBS is based on counting the number of Best-Buddies Pairs (BBPs)-pairs of points in source and target sets, where each point is the nearest neighbor of the other. BBS has several key features that make it robust against complex geometric deformations and high levels of outliers, such as those arising from background clutter and occlusions. We study these properties, provide a statistical analysis that justifies them, and demonstrate the consistent success of BBS on a challenging real-world dataset.Israel Science Foundation (Grant 1556/10)National Science Foundation (U.S.) (1212849)Shell Researc

    Best-Buddies Similarity—Robust Template Matching Using Mutual Nearest Neighbors

    No full text

    The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies

    No full text
    International audienceAbstract. Benthic foraminiferal tests are widely used for paleoceanographic reconstructions from a range of different environments with varying dissolved oxygen concentrations in the bottom water. There is ample evidence that foraminifera can live in anoxic sediments. For some species, this is explained by a switch to facultative anaerobic metabolism (i.e. denitrification). Here we show for the first time that adult specimens of three benthic foraminiferal species are not only able to survive, but are also able to calcify under anoxic conditions, at various depths in the sediment, and with or without nitrates. In fact, several specimens of Ammonia tepida (1–4%), Bulimina marginata (8–24%) and Cassidulina laevigata (16–23%) were able to calcify at different redox fronts of sediment cores, under laboratory conditions. This demonstrates ongoing metabolic processes, even in micro-environments where denitrification is not possible. Earlier observations suggest that the disappearance of foraminiferal communities after prolonged anoxia is not due to instantaneous or strongly increased adult mortality. Here we show that it cannot be explained by an inhibition of growth through chamber addition either. Our observations of ongoing calcification under anoxic conditions mean that geochemical proxy data obtained from benthic foraminifera in settings experiencing intermittent anoxia have to be reconsidered. The analysis of whole single specimens or of their successive chambers may provide essential information about short-term environmental variability and/or the causes of anoxia
    corecore