16 research outputs found

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the ex‐ tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (precon‐ ditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experi‐ mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐ bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative character‐ istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dis‐ solved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐ uted most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐ ables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached sub‐ stances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying event

    Expert panel diagnosis demonstrated high reproducibility as reference standard in infectious diseases

    No full text
    Objective: If a gold standard is lacking in a diagnostic test accuracy study, expert diagnosis is frequently used as reference standard. However, interobserver and intraobserver agreements are imperfect. The aim of this study was to quantify the reproducibility of a panel diagnosis for pediatric infectious diseases. Study Design and Setting: Pediatricians from six countries adjudicated a diagnosis (i.e., bacterial infection, viral infection, or indeterminate)for febrile children. Diagnosis was reached when the majority of panel members came to the same diagnosis, leaving others inconclusive. We evaluated intraobserver and intrapanel agreement with 6 weeks and 3 years’ time intervals. We calculated the proportion of inconclusive diagnosis for a three-, five-, and seven-expert panel. Results: For both time intervals (i.e., 6 weeks and 3 years), intrapanel agreement was higher (kappa 0.88, 95%CI: 0.81-0.94 and 0.80, 95%CI: NA)compared to intraobserver agreement (kappa 0.77, 95%CI: 0.71-0.83 and 0.65, 95%CI: 0.52-0.78). After expanding the three-expert panel to five or seven experts, the proportion of inconclusive diagnoses (11%)remained the same. Conclusion: A panel consisting of three experts provides more reproducible diagnoses than an individual expert in children with lower respiratory tract infection or fever without source. Increasing the size of a panel beyond three experts has no major advantage for diagnosis reproducibility

    Cholesterol in negatively charged lipid bilayers modulates the effect of the antimicrobial protein granulysin

    Full text link
    The release of granulysin, a 9-kDa cationic protein, from lysosomal granules of cytotoxic T lymphocytes and natural killer cells plays an important role in host defense against microbial pathogens. Granulysin is endocytosed by the infected target cell via lipid rafts and kills subsequently intracellular bacteria. The mechanism by which granulysin binds to eukaryotic and prokaryotic cells but lyses only the latter is not well understood. We have studied the effect of granulysin on large unilamellar vesicles (LUVs) and supported bilayers with prokaryotic and eukaryotic lipid mixtures or model membranes with various lipid compositions and charges. Binding of granulysin to bilayers with negative charges, as typically found in bacteria and lipid rafts of eukaryotic cells, was shown by immunoblotting. Fluorescence release assays using LUV revealed an increase in permeability of prokaryotic, negatively charged and lipid raft-like bilayers devoid of cholesterol. Changes in permeability of these bilayers could be correlated to defects of various sizes penetrating supported bilayers as shown by atomic force microscopy. Based on these results, we conclude that granulysin causes defects in negatively charged cholesterol-free membranes, a membrane composition typically found in bacteria. In contrast, granulysin is able to bind to lipid rafts in eukaryotic cell membranes, where it is taken up by the endocytotic pathway, leaving the cell intac

    Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. VIII. An intensive HST, IUE, and ground-based study of NGC 5548

    No full text
    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert I galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-1989. IUE spectra were obtained once every 2 days for a period of 74 days beginning on 1993 March 14. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both eco imaging and aperture photometry), are reported for the period 1992 October-1993 September, although many of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution we describe the acquisition and reduction of ali of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 Å continuum flux is found to have varied by nearly a factor of 2. In other wave bands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short­ timescale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission-line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 Å continuum and the 5100 Å continuum amounting to less than about 1 day; (2) that the variations in the highest ionization lines observed, He II λ1640 and N v λ1240, lag behind the continuum variations by somewhat less than 2 days; and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are pretiminary and quite uncertain, but there are some weak indications that the emission-line wings (|Δv|≥ 3000 km s-ˡ) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad Hβ line flux follow the continuum variations with time lag of around 2 weeks, about twice the lag for Lyα and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Lyα, C IV, and Hβ are each slightly smaller than previous determmations. We confirm two trends reported eartier, namely, (1) that the UV /optical continuum becomes "harder" as it gets brighter and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratification of a broad-line region that spans over an order of magnitude range in radius

    Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. VIII. An intensive HST, IUE, and ground-based study of NGC 5548

    No full text
    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert I galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-1989. IUE spectra were obtained once every 2 days for a period of 74 days beginning on 1993 March 14. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both eco imaging and aperture photometry), are reported for the period 1992 October-1993 September, although many of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution we describe the acquisition and reduction of ali of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 Å continuum flux is found to have varied by nearly a factor of 2. In other wave bands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short­ timescale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission-line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 Å continuum and the 5100 Å continuum amounting to less than about 1 day; (2) that the variations in the highest ionization lines observed, He II λ1640 and N v λ1240, lag behind the continuum variations by somewhat less than 2 days; and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are pretiminary and quite uncertain, but there are some weak indications that the emission-line wings (|Δv|≥ 3000 km s-ˡ) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad Hβ line flux follow the continuum variations with time lag of around 2 weeks, about twice the lag for Lyα and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Lyα, C IV, and Hβ are each slightly smaller than previous determmations. We confirm two trends reported eartier, namely, (1) that the UV /optical continuum becomes "harder" as it gets brighter and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratification of a broad-line region that spans over an order of magnitude range in radius
    corecore