163 research outputs found

    Damage in porous media due to salt crystallization

    Get PDF
    We investigate the origins of salt damage in sandstones for the two most common salts: sodium chloride and sulfate. The results show that the observed difference in damage between the two salts is directly related to the kinetics of crystallization and the interfacial properties of the salt solutions and crystals with respect to the stone. We show that, for sodium sulfate, the existence of hydrated and anhydrous crystals and specifically their dissolution and crystallization kinetics are responsible for the damage. Using magnetic resonance imaging and optical microscopy we show that when water imbibes sodium sulfate contaminated sandstones, followed by drying at room temperature, large damage occurs in regions where pores are fully filled with salts. After partial dissolution, anhydrous sodium sulfate salt present in these regions gives rise to a very rapid growth of the hydrated phase of sulfate in the form of clusters that form on or close to the remaining anhydrous microcrystals. The rapid growth of these clusters generates stresses in excess of the tensile strength of the stone leading to the damage. Sodium chloride only forms anhydrous crystals that consequently do not cause damage in the experiments

    The effect of the thermal conductivity of the substrate on droplet evaporation

    Get PDF
    The evaporation of liquid droplets is of fundamental importance to industry, with a vast number of applications including ink-jet printing, spray cooling and DNA mapping, and has been the subject of considerable theoretical and experimental research in recent years. Significant recent papers include those by Deegan [1], Deegan et al. [2], Hu and Larson [3], Poulard et al. [4], Sultan et al. [5], and Shahidzadeh-Bonn et al. [6]

    Transition from a simple yield stress fluid to a thixotropic material

    Get PDF
    From MRI rheometry we show that a pure emulsion can be turned from a simple yield stress fluid to a thixotropic material by adding a small fraction of colloidal particles. The two fluids have the same behavior in the liquid regime but the loaded emulsion exhibits a critical shear rate below which no steady flows can be observed. For a stress below the yield stress, the pure emulsion abruptly stops flowing, whereas the viscosity of the loaded emulsion continuously increases in time, which leads to an apparent flow stoppage. This phenomenon can be very well represented by a model assuming a progressive increase of the number of droplet links via colloidal particles.Comment: Published in Physical Review E. http://pre.aps.org/abstract/PRE/v76/i5/e05140

    Deposits from evaporating emulsion drops

    Get PDF
    The processes in which droplets evaporate from solid surfaces, leaving behind distinct deposition patterns, have been studied extensively for variety of solutions. In this work, by combining different microscopy techniques (confocal fluorescence, video and Raman) we investigate pattern formation and evaporation-induced phase change in drying oil-in-water emulsion drops. This combination of techniques allows us to perform drop shape analysis while visualizing the internal emulsion structure simultaneously. We observe that drying of the continuous water phase of emulsion drops on hydrophilic surfaces favors the formation of ring-like zones depleted of oil droplets at the contact line, which originate from geometrical confinement of oil droplets by the meniscus. From such a depletion zone, a “coffee ring” composed of surfactant molecules forms as the water evaporates. On all surfaces drying induces emulsion destabilization by coalescence of oil droplets, commencing at the drop periphery. For hydrophobic surfaces, the coalescence of the oil droplets leads to a uniform oil film spreading out from the initial contact line. The evaporation dynamics of these composite drops indicate that the water in the continuous phase of the emulsion drops evaporates predominantly by diffusion through the vapor, showing no large differences to the evaporation of simple water drops

    Capillary Forces Lead to Pendant Crystals at the Liquid-Air Interface of Evaporating Salt Solutions

    Get PDF
    We investigated the nucleation and growth processes of individual NaCl crystals from an evaporating salt solution that is supersaturated. We find that crystals nucleate at the liquid/vapor interface, resulting in distinct “pendant” crystals, which reach millimeter dimensions. The substantial size of the crystals induces deformation of the interface. This process and the evaporation rate, in turn, determine the final crystal shape, which features a deep central cavity. Our findings reveal that a delicate balance exists between gravity, buoyancy, and the surface tension of the liquid/vapor interface that allows the crystal to remain pendant. When the contact angle of the crystal with the meniscus reaches 90°, the crystal disconnects from the interface and falls into the solution. We quantitatively predict the critical mass at which this occurs.</p
    • …
    corecore