2,307 research outputs found

    Malaysia’s Policy Responses to the Panic of 1997: An Islamic Perspective

    Get PDF
    This thesis explores the rationale behind the decisions of the Malaysian policymakers in response to the Panic of 1997, as Malaysia is the only country that had rejected the Washington Consensus while the rest of the crisis-affected countries pursued the orthodox policies. The thesis is to investigate whether the reasons behind the policy responses were due to adhering to the underlying principles of Shariah or mere political pragmatism. Identified by the World Bank as a newly industrialising economy (NIE), Malaysia symbolises a developing country with an impressive growth rate in the last thirty years prior to the Panic of 1997. The transformation to a rapid economic growth in the 1980s and 1990s resulted from a change of policies regarding social and economic development. It was a widespread perception that the reason for Malaysia’s rejection of IMF’s involvement was primarily due to prevent any intervention in its existing social affirmative action policy known as the New Economic Policy (NEP). Concurrently, Prime Minister Mahathir’s strong advocation towards the Islamisation policy had also made a significant impact in the development of Malaysia’s policy framework. The Washington Consensus via the IMF delegitimised the prevailing economic system in Southeast Asia by blaming the structural deficiencies in the financial and corporate sectors of the countries as the root cause of the Panic of 1997. The IMF believed that the Washington Consensus presents a model for institutional transformation. However, Malaysia had adopted the unorthodox capital control policy as a policy response, while the rest of the crisis-affected countries had accepted the Washington Consensus. The thesis adopts a historical institutional analysis in explaining the significance of the Islamisation policy and the importance of upholding the NEP and the likely impact of its reversal or revocation

    A New Transport Regime in the Quantum Hall Effect

    Full text link
    This paper describes an experimental identification and characterization of a new low temperature transport regime near the quantum Hall-to-insulator transition. In this regime, a wide range of transport data are compactly described by a simple phenomenological form which, on the one hand, is inconsistent with either quantum Hall or insulating behavior and, on the other hand, is also clearly at odds with a quantum-critical, or scaling, description. We are unable to determine whether this new regime represents a clearly defined state or is a consequence of finite temperature and sample-size measurements.Comment: Revtex, 3 pages, 2 figure

    The Quantized Hall Insulator: A New Insulator in Two-Dimensions

    Full text link
    Quite generally, an insulator is theoretically defined by a vanishing conductivity tensor at the absolute zero of temperature. In classical insulators, such as band insulators, vanishing conductivities lead to diverging resistivities. In other insulators, in particular when a high magnetic field (B) is added, it is possible that while the magneto-resistance diverges, the Hall resistance remains finite, which is known as a Hall insulator. In this letter we demonstrate experimentally the existence of another, more exotic, insulator. This insulator, which terminates the quantum Hall effect series in a two-dimensional electron system, is characterized by a Hall resistance which is approximately quantized in the quantum unit of resistance h/e^2. This insulator is termed a quantized Hall insulator. In addition we show that for the same sample, the insulating state preceding the QHE series, at low-B, is of the HI kind.Comment: 4 page

    Hairy Black Holes and Null Circular Geodesics

    Full text link
    Einstein-matter theories in which hairy black-hole configurations have been found are studied. We prove that the nontrivial behavior of the hair must extend beyond the null circular orbit (the photonsphere) of the corresponding spacetime. We further conjecture that the region above the photonsphere contains at least 50% of the total hair's mass. We support this conjecture with analytical and numerical results.Comment: 5 page

    Universality in the Crossover between Edge Channel and Bulk Transport in the Quantum Hall Regime

    Full text link
    We present a new theoretical approach for the integer quantum Hall effect, which is able to describe the inter-plateau transitions as well as the transition to the Hall insulator. We find two regimes (metallic and insulator like) of the top Landau level, in which the dissipative bulk current appears in different directions. The regimes are separated by a temperature invariant point.Comment: 4 page, 2 eps figures included, submitte

    Evidence for a Finite Temperature Insulator

    Full text link
    In superconductors the zero-resistance current-flow is protected from dissipation at finite temperatures (T) by virtue of the short-circuit condition maintained by the electrons that remain in the condensed state. The recently suggested finite-T insulator and the "superinsulating" phase are different because any residual mechanism of conduction will eventually become dominant as the finite-T insulator sets-in. If the residual conduction is small it may be possible to observe the transition to these intriguing states. We show that the conductivity of the high magnetic-field insulator terminating superconductivity in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero conductance at T<0.04 K. We discuss our results in the light of theories that lead to a finite-T insulator

    The fastest way to circle a black hole

    Full text link
    Black-hole spacetimes with a "photonsphere", a hypersurface on which massless particles can orbit the black hole on circular null geodesics, are studied. We prove that among all possible trajectories (both geodesic and non-geodesic) which circle the central black hole, the null circular geodesic is characterized by the {\it shortest} possible orbital period as measured by asymptotic observers. Thus, null circular geodesics provide the fastest way to circle black holes. In addition, we conjecture the existence of a universal lower bound for orbital periods around compact objects (as measured by flat-space asymptotic observers): T4πMT_{\infty}\geq 4\pi M, where MM is the mass of the central object. This bound is saturated by the null circular geodesic of the maximally rotating Kerr black hole.Comment: 5 page
    corecore