25,736 research outputs found

    The power of neural nets

    Get PDF
    Implementation of the Hopfield net which is used in the image processing type of applications where only partial information about the image may be available is discussed. The image classification type of algorithm of Hopfield and other learning algorithms, such as the Boltzmann machine and the back-propagation training algorithm, have many vital applications in space

    Thermodynamics of Vortices in the Plane

    Full text link
    The thermodynamics of vortices in the critically coupled abelian Higgs model, defined on the plane, are investigated by placing NN vortices in a region of the plane with periodic boundary conditions: a torus. It is noted that the moduli space for NN vortices, which is the same as that of NN indistinguishable points on a torus, fibrates into a CPN1CP_{N-1} bundle over the Jacobi manifold of the torus. The volume of the moduli space is a product of the area of the base of this bundle and the volume of the fibre. These two values are determined by considering two 2-surfaces in the bundle corresponding to a rigid motion of a vortex configuration, and a motion around a fixed centre of mass. The partition function for the vortices is proportional to the volume of the moduli space, and the equation of state for the vortices is P(A4πN)=NTP(A-4\pi N)=NT in the thermodynamic limit, where PP is the pressure, AA the area of the region of the plane occupied by the vortices, and TT the temperature. There is no phase transition.Comment: 17 pages, DAMTP 93-3

    Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions

    Full text link
    Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary k of n nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary d nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n-1 >= 2k-1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact-repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d < 2k-3 in the absence of symbol extension, and (d) the construction, also explicit, of MSR codes for d = k+1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the non-existence proof for d < 2k-3. To the best of our knowledge, the constructions presented in this paper are the first, explicit constructions of regenerating codes that achieve the cut-set bound.Comment: 38 pages, 12 figures, submitted to the IEEE Transactions on Information Theory;v3 - The title has been modified to better reflect the contributions of the submission. The paper is extensively revised with several carefully constructed figures and example

    Explicit Construction of Optimal Exact Regenerating Codes for Distributed Storage

    Full text link
    Erasure coding techniques are used to increase the reliability of distributed storage systems while minimizing storage overhead. Also of interest is minimization of the bandwidth required to repair the system following a node failure. In a recent paper, Wu et al. characterize the tradeoff between the repair bandwidth and the amount of data stored per node. They also prove the existence of regenerating codes that achieve this tradeoff. In this paper, we introduce Exact Regenerating Codes, which are regenerating codes possessing the additional property of being able to duplicate the data stored at a failed node. Such codes require low processing and communication overheads, making the system practical and easy to maintain. Explicit construction of exact regenerating codes is provided for the minimum bandwidth point on the storage-repair bandwidth tradeoff, relevant to distributed-mail-server applications. A subspace based approach is provided and shown to yield necessary and sufficient conditions on a linear code to possess the exact regeneration property as well as prove the uniqueness of our construction. Also included in the paper, is an explicit construction of regenerating codes for the minimum storage point for parameters relevant to storage in peer-to-peer systems. This construction supports a variable number of nodes and can handle multiple, simultaneous node failures. All constructions given in the paper are of low complexity, requiring low field size in particular.Comment: 7 pages, 2 figures, in the Proceedings of Allerton Conference on Communication, Control and Computing, September 200

    Participatory Ranking of Fodders in the Western Hills of Nepal

    Full text link
    Fodder is an important source of feed of the ruminants in Nepal. In the mid hills of Nepal, farmers generally practice integrated farming system that combines crop cultivation with livestock husbandry and agroforestry. Tree fodders are good sources of protein during the forage and green grass scarcity periods especially in dry season. Local communities possess indigenous knowledge for the selection of grasses and tree fodders at different seasons in mid hills of western Nepal. A study was conducted on the perception of farmers with respect to selection of fodder species in eight clusters in Kaski and Lumjung districts that range 900-2000 meter above sea level and receive average precipitation of 2000- 4500mm per annum. During the fodder preference ranking, farmers prepared the inventory of fodders found around the villages and nearby forests and selected top ten most important fodders in terms of their availability, palatability, fodder yield, milk yield and milk fat yield. In total, 23 top ranking fodders species were selected from the eight clusters. These fodder species were also ranked using pairwise ranking and weighted scoring methods and ranking was done on the basis of merit numbers obtained from weighted scores. The analysis revealed Artocarpus lakoocha as best tree fodder followed by Ficus semicordata, Thysanolena maxima and Ficus calvata. Similarly, the calendar of fodders trees for lopping season and the best feeding time was prepared on the basis of farmers\u27 local knowledge. This study suggests strategies for promotion of locally preferred tree fodder species and supplementing tree fodder with feed in different seasons depending on their availability and local preferences

    Explaining Snapshots of Network Diffusions: Structural and Hardness Results

    Full text link
    Much research has been done on studying the diffusion of ideas or technologies on social networks including the \textit{Influence Maximization} problem and many of its variations. Here, we investigate a type of inverse problem. Given a snapshot of the diffusion process, we seek to understand if the snapshot is feasible for a given dynamic, i.e., whether there is a limited number of nodes whose initial adoption can result in the snapshot in finite time. While similar questions have been considered for epidemic dynamics, here, we consider this problem for variations of the deterministic Linear Threshold Model, which is more appropriate for modeling strategic agents. Specifically, we consider both sequential and simultaneous dynamics when deactivations are allowed and when they are not. Even though we show hardness results for all variations we consider, we show that the case of sequential dynamics with deactivations allowed is significantly harder than all others. In contrast, sequential dynamics make the problem trivial on cliques even though it's complexity for simultaneous dynamics is unknown. We complement our hardness results with structural insights that can help better understand diffusions of social networks under various dynamics.Comment: 14 pages, 3 figure

    Curvature dependence of the effect of ionic functionalization on the attraction among nanoparticles in dispersion

    Get PDF
    Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization.We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solventaveraged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing –COOK or –NH3Cl groups. To assess the change in nanoparticles’ dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%–50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface interactions in distinct geometries until an essentially curvature-independent dispersion environment is created. Insights into tuning nanoparticle interactions can guide the synthesis of a broad class of nonpolar nanoparticles, where solubility is achieved by ionic functionalization
    corecore