Much research has been done on studying the diffusion of ideas or
technologies on social networks including the \textit{Influence Maximization}
problem and many of its variations. Here, we investigate a type of inverse
problem. Given a snapshot of the diffusion process, we seek to understand if
the snapshot is feasible for a given dynamic, i.e., whether there is a limited
number of nodes whose initial adoption can result in the snapshot in finite
time. While similar questions have been considered for epidemic dynamics, here,
we consider this problem for variations of the deterministic Linear Threshold
Model, which is more appropriate for modeling strategic agents. Specifically,
we consider both sequential and simultaneous dynamics when deactivations are
allowed and when they are not. Even though we show hardness results for all
variations we consider, we show that the case of sequential dynamics with
deactivations allowed is significantly harder than all others. In contrast,
sequential dynamics make the problem trivial on cliques even though it's
complexity for simultaneous dynamics is unknown. We complement our hardness
results with structural insights that can help better understand diffusions of
social networks under various dynamics.Comment: 14 pages, 3 figure